Reduced Phonon Conductivity of $\text{Ba}_x\text{Co}_4\text{Sb}_{12}$ by Phase-Segregation Scattering

Filled skutterudites are promising high-temperature, high-performance thermoelectric materials and we show how their phonon conductivity is greatly influenced by the topology of the filler species. We predict (ab initio) the phase diagram of $\text{Ba}_x\text{Co}_4\text{Sb}_{12}$ and find several stable configurations of Ba ordering over the intrinsic voids. The phonon conductivity predicted using equilibrium molecular dynamics shows a minimum in the two-phase mixture regime, dominated by significantly reduced long-range acoustic phonon transport.

The diagram of calculation methodology. Our computational approach is two-fold. We begin with finding the phase diagram using ab initio calculations, the cluster expansion (CE) method, and the Monte Carlo (MC) simulations. Thereafter, using molecular dynamics (MD) simulations and the Green-Kubo fluctuation-dissipation linear response theory and k_p decomposition, along with the phase diagram, we predict the k_p of partially-filled $\text{Ba}_x\text{Co}_4\text{Sb}_{12}$ as a function of concentration and temperature.

Calculation of Solid-State Phase Diagram

- **Cluster Expansion (CE) and Ab Initio Calculations**
 - A set of 28 configurational energies were calculated from DFT.
 - Energies of the five ordered configurations predicted by the CE have been verified using DFT.

- **Monte Carlo Simulations**
 - By applying MC simulations to the cluster expanded Hamiltonian for the configurational energy, it is possible to construct a temperature-composition phase diagram.

The results of phase diagram calculations: The CE was parameterized by ΔE_f of Ba-Va configurations calculated from first principles. Below $x_{\text{Ba}} \leq 0.5$, We identified three ground-state ordered phases: CoSb_3 at $x_{\text{Ba}}=0$, γ-phase at $x_{\text{Ba}}=0.25$ and α-phase at $x_{\text{Ba}}=0.5$. At higher temperatures, Ba-Va solid solution occurs, and coexistence can be achieved between any two of the phases. From the phase diagram, MD calculations were done using three ground-state configurations, two Monte Carlo snapshots, and three γ- and α-phase mixtures at 300K.

Prediction of Phonon Conductivity (k_p)

Dependence on various Ba compositions at RT

- For the solid solution structure, phonons propagate through the ordered CoSb, and the randomly distributed Ba atoms act as point defects (PD). Such PDs cause significant phonon scattering in Regime-I.

- In the two-phase mixture (Regime-II), the mixture of two ordered phases causes significant alloy scattering. We concluded that these two regimes can be characterized predominantly by these scattering mechanisms.

Temperature effects for several fill fractions

- The single-phase crystal follows the Slack relation ($k_p \sim T^{-1}$), while the two-phase mixtures reaches a plateau, similar to amorphous solid $k_{p\text{init}}$. This reconfirms that the two-phase mixtures can be considered as pseudo-amorphous structures with significant reduction in k_p for such crystalline TE materials.