
Nanoscale

PAPER

Cite this: Nanoscale, 2017, 9, 18022

Received 23rd August 2017,
Accepted 23rd October 2017

DOI: 10.1039/c7nr06216h

rsc.li/nanoscale

Phonon coupling and transport in individual
polyethylene chains: a comparison study with
the bulk crystal†

Xinjiang Wang, a Massoud Kavianyb and Baoling Huang *a

Using the first-principles-based anharmonic lattice dynamics, we calculate the thermal conductivities (κ)

of both bulk and single-chain polyethylene (PE) and characterize the mode-wise phonon transport and

scattering channels. A significantly higher room-temperature axial thermal conductivity in single-chain PE

(1400 W m−1 K−1) is observed compared to bulk PE crystals (237 W m−1 K−1). The reduction of scattering

phase space caused by the diminished inter-chain van der Waals interactions explains the much larger

κ in single-chain PE. Different from many previous studies, the thermal conductivity of single-chain PE is

predicted to converge at a chain length of ∼1 mm at 300 K. The convergence is explained by the indirect

thermal resistance from momentum-conserving scatterings of long-wavelength phonons. It is also found

that longitudinal phonon modes dominate the thermal transport in PE chains, while transverse phonon

branches with quadratic dispersions contribute little to κ due to their vanishing group velocities and

limited lifetimes in the long wavelength limit. The predicted high κ of bulk crystalline and single-chain PE

show great potential for use of polymers in thermal management, and the unveiled phonon transport

mechanisms offer guides for their molecule-level design.

Introduction

Polymers are often classified as thermally resistive materials
due to their low thermal conductivities (0.1 to 0.5 W m−1 K−1

near room temperature) in their amorphous state.1 However,
in applications ranging from cell-phone covers to the encapsu-
lation of solar cells,2 effective heat dissipation is imperative in
stabilizing device performance and increasing lifetime. So,
there is interest in thermally conductive polymers, and poly-
mers with thermal conductivity κ above 10 W m−1 K−1 are
already competitive in many applications such as in situ heat
sinks in LED devices.3 Improved κ has been reported for poly-

mers with better crystallization. Significant increases of the
axial thermal conductivity of polyethylene (PE) with large draw
ratios have been observed (κ ≈ 42 W m−1 K−1 at room tempera-
ture with a draw ratio ∼350 (ref. 4)). This is because of the
more aligned polymer chains in ultradrawn polymers which
serve as efficient phonon transport paths along the axis
(caused by the strong carbon–carbon covalent bonds,
approaching the C–C bonds in diamond and graphite5).

Low dimensionality can also improve the thermal conduc-
tivity. For example, single-layer graphene and h-BN have larger
thermal conductivities than their bulk lattices.5,6 This is due
to the reduction of scattering channels, mainly caused by sym-
metry constraints7 and the removal of inter-layer coupling gov-
erned by strongly anharmonic van der Waals (vdW) forces.8 By
analogy, thermal transport in low-dimensional polymers may
also benefit from the diminished vdW forces; for example,
thermal conductivity up to 104 W m−1 K−1 has been reported
for PE nanofibers of diameter around 50 nm.9 The interest in
single chain extraction10 and nanoscale thermal conductivity
measurement11 continues.

Given the encouraging findings on polymers with large κ, it
is desirable to unveil the thermal transport mechanisms in
thermally conductive polymer structures and explore their
potential in thermal management. However, direct measure-
ments of single-crystalline or single-chain polymers remain
very challenging due to the great difficulty of sample synthesis.
Therefore, theoretical modeling and numerical simulations
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have been used to investigate the thermal transport in these
polymer structures. The axial κ of the crystalline PE has been
predicted using molecular dynamics simulations (MD) to
range from 47 to 310 ± 190 W m−1 K−1 (ref. 12 and 13) at room
temperature. As for the thermal transport in a single polymer
chain, there is an intense debate dating back to the early
1940s on whether the thermal conductivity of 1-D lattices con-
verges14 or not.15 Conventional 1-D models often neglect the
cross-axial vibrations and therefore it is still an open question
whether they can accurately describe the phonon transport in
a PE chain. The κ of quasi-1-D single polymer chains involving
transverse motions has been predicted by atomic simulations,
e.g., MD12,16–21 and the Green’s function method,22 finding
larger values compared to the bulk lattice. However, bifur-
cations exist in simulated results over the convergence of an
infinite chain. The κ of an individual PE chain is found to
increase with the increase of length within the maximum
simulation size (1000 unit cells), while a convergent thermal
conductivity is reported for poly(p-phenylene).20 The equili-
brium MD results for 1-D PE chains are not conclusive either:
convergent κ was reported19 for some cases, while divergence
was found under different initial conditions.21

Previous excellent computational studies helped to predict
κ and unveil transport mechanisms in the 1-D polymer chain.
However, the Green’s function method22 normally assumes
ballistic phonon transport, and leads to a diverging κ with the
increase of simulation size. On the other hand, classical MD
simulations adopt empirical or semi-empirical potentials, and
quantitative or even qualitative accuracy of the results essen-
tially relies on the quality of these potentials. Furthermore,
classical MD simulations are strictly valid only near or above
the Debye temperature of the simulation system, while the
high axial group velocity of a polymer crystal often results in a
high Debye temperature (>1000 K),23 which raises concerns
about MD simulations near room temperature. In addition,
non-equilibrium MD simulations require simulation dimen-
sions much larger than the largest phonon mean free path
(MFP),24 while equilibrium MD simulations require sufficiently
long simulation times. Both are challenging under the small
intrinsic scattering strength.25 Owing to these limitations, in
recent years, first-principles lattice dynamics calculations of
thermal transport properties based on the Boltzmann
Transport Equation (BTE) have received great attention. The
first-principles calculations have the advantages of accuracy
and no fitting parameters (by solving the electron Kohn–Sham
equation26). The BTE also makes it easier to conduct mode-
wise analysis of thermal transport and directly reveal the scat-
tering mechanisms.27 This technique has been successfully
used to study the phonon mode transport in many bulk crys-
tals28,29 and two-dimensional materials including graphene25

and silicene.30 However, to the best of our knowledge, so far
there have been few studies on the mode-wise phonon trans-
port in single polymer chains or single crystalline polymers
using first-principles calculations and BTE. The closest work
should be the lattice dynamics investigations into carbon
nanotubes (CNT), which are also a quasi-1-D material.28,31 It

was revealed in precedent studies that the lack of Umklapp
scatterings among acoustic phonons due to the rotational
selection rule might lead to a divergent thermal conductivity
in single-walled CNT.28 But it is still unclear whether this
phenomenon is universal in all chain materials.

In this study, we investigate the phonon coupling and trans-
port in bulk crystalline polyethylene (PE) and single PE chains
with first-principles calculations and numerical solution of the
BTE. A high thermal conductivity of single-crystalline PE, com-
parable with that of aluminum, is found, which reveals great
potential for crystalline polymers in thermal management. An
even much higher but convergent κ in single-chain PE (up to
1400 W m−1 K−1 at 300 K) with vanished vdW forces is
reported. The influence of various selection rules such as the
conservation of momentum, angular momentum and energy
on the thermal transport in single-chain PE is discussed. It is
revealed that the strong momentum-conserving phonon scat-
terings of long-wavelength acoustic phonons contribute
indirectly to the thermal resistance, leading to a convergent κ.
Interestingly, the two transverse modes in the 1-D PE chain
with quadratic dispersions only contribute a little to κ at room
temperature, in contrast with the dominant κ contribution
from the quadratic flexural mode in many 2-D materials25

including graphene. The corresponding mechanisms of the
above phenomena are then discussed.

Methodology

The phonon conductivity tensor κ of a crystal can be derived
from the kinetic theory and a linear expansion of the equili-
brium distribution with the temperature gradient,

κij ¼ � 1
NoΩ

X
λ

ħωλviλn
o
λ noλ þ 1
� �

Fj
λ; ð1Þ

where λ represents a phonon mode with a wavevector q and
phonon polarization p, ω is the phonon frequency, i, j are the
Cartesian indices, v is the phonon group velocity, noλ is the
equilibrium phonon Bose–Einstein occupancy and is deter-
mined by noλ = [exp (ħω/(kBT ) − 1)]−1 (kB is the Boltzmann con-
stant), Ω is the unit-cell volume and No is the total number of
q-points (within the first Brillouin zone). F is the linear
phonon perturbation vector to expand the real occupancy nλ =
noλ + noλ (n

o
λ + 1) Fλ·∇T and can be obtained by solving the BTE

� viðλÞn0λ n0λ þ 1
� � ħωλ

kBT2 ¼ P̃λ;λ′Fi
λ; ð2Þ

where P̃λ,λ′ is the combined scattering matrix and is written as

P̃λλ′ ¼Pb
λ δλλ′ þ

1
2

X
λ′′;λ′′′

P�λ′′
λ;λ′′′ þ P�λ′′′

λ;λ′′ þ P�λ
λ′′′;λ′′

� �
δλλ′

þ
X
λ′′

P�λ′′
λ;λ′ þ P�λ′

λ;λ′′ þ P�λ
λ′;λ′′

� �
:

ð3Þ

Here Pλ″λ;λ′, Pλ′λ;λ″ and Pλλ′;λ″ are the three-phonon scattering
probabilities and Pbλ the boundary scattering probability. All
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the three phonon scattering processes should satisfy the
energy conservation, i.e., ωλ ± ωλ′ ± ωλ″ = 0, while quasi-
momentums are constrained by q + q′ + q″ = 0 (G), where 0
indicates a momentum conserving (normal) process and G (a
non-zero reciprocal lattice vector) a non-conserving (Umklapp)
process. The above expression is slightly different from some
literature reports32,33 but consistent with Chaput’s simplifica-
tion,34 where, in principle, this definition is equivalent consid-
ering the time reverse symmetry and makes the expression of
eqn (2) easier for implementation.34

In eqn (3), only Pλ″λ;λ′ is expressed without loss of generaliz-
ation as

Pλ″
λ;λ′ ¼ 2πnoλn

o
λ′ ðnoλ″ þ 1ÞjV λ;λ′;λ″j2 δðωλ þ ωλ′ � ωλ″Þ; ð4Þ

where δ is the Dirac delta function and V is the anharmonic
force constant projected onto the eigenvector space.35

In a finite system, phonons experience an additional scat-
tering with the boundary. Assuming a diffuse surface with
elastic scattering, we have36

Pb
λ ¼ vλj j

l
noλ noλ þ 1
� � ð5Þ

where l is the Casimir effective length of the sample.
With the scattering operators, eqn (2) is solved first neglect-

ing Fλ′, Fλ″ [corresponding to the single-mode relaxation-time
model (SMRT)37] and later iteratively to obtain the exact solu-
tion using the preconditioned conjugate-gradient method38

owing to its less stringent and faster convergence.
By comparing eqn (1) with the general thermal expression

from SMRT κij(λ) = Cv(λ)viλv
j
λτλ, where Cv = ℏω∂n0λ /∂T is modal

heat capacity, we define an effective phonon lifetime,

τeff;λ ¼ kBT2

ℏωλ
�Fλ�vλ
vλj j2 : ð6Þ

Different from the relaxation time from SMRT, this newly
defined lifetime conveys information on multiple phonon exci-
tations and yet casts a simplified picture in the conventional
frame for a better understanding. To calculate the thermal
conductivity using the above equations, harmonic and anhar-
monic interatomic force constants are the only required
inputs, which can be obtained using first-principles calcu-
lations through the finite displacement method.39 More
details of the calculation of lattice κ through the BTE method
can be found elsewhere.32,38,39

For bulk PE, both relaxation and static energy calculations
used the van der Waals (vdW) functional optB88-vdW40,41 in
addition to the local-density approximation (LDA), as
implemented in the Vienna ab initio simulation package
(VASP).42,43 The structure was fully relaxed with a cutoff energy
of 550 eV and an 11 × 15 × 31 k-point meshing scheme in the
Brillouin zone. Then the original cell was expanded to a super-
cell of size 2 × 3 × 5 for the harmonic force constant calcu-
lations and 2 × 2 × 3 for the anharmonic ones. The thermal
conductivity was calculated on different mesh sizes until con-
vergence was reached.

For PE chains, the first-principles calculations are similar
to those for the bulk, except that a vacuum slab of thickness
17 Å, large enough to diminish the influence of vdW forces,
was used to accommodate the chain in the lateral directions (a
and b in Fig. 1). The cross-sectional area of a single PE chain is
defined the same as the average area one chain occupies in the
PE crystal (∼16.9 Å2). After careful tests, the supercell sizes for
the calculation of harmonic and anharmonic properties were
chosen as 1 × 1 × 9 and 1 × 1 × 5, respectively, to ensure satis-
factory convergence. Although the calculation process on the
1-D PE chain should be simpler than the bulk because of the
disregard of cross-axial interactions, the results were found to
be much more sensitive to the inevitable errors during the cal-
culations. So, special techniques, including the symmetry con-
straints and the hyperspace tetrahedron method, were used for
both the bulk and single-chain PE calculations.

The symmetry constraints on both harmonic and anharmo-
nic force constants consist of permutational, translational,
and rotational invariances and point group symmetries44 (see
the ESI† for more details). These symmetry constraints on the
system not only reduce calculations, but also allow verifying
the physicality of the results. There are intrinsic errors in the
first-principles calculations, such as incomplete basis wave-
functions and small but finite residual stresses in the relaxed
structures.45 These small errors significantly influence the be-
havior of long-wavelength phonons (i.e., dispersions in the
long wavelength limit, see Fig. S1 in the ESI†). Therefore, the
calculated force constants need to be adjusted to be physically
reasonable, but such adjustments should be kept minimal to
keep major lattice properties. Here we adopted the Lagrange
multiplier method46 to symmetrize the force constants. By uti-
lizing this method, which implies the least discrepancy of the
newly obtained force constants from the original, the irreduci-
ble elements were solved and the force constants satisfying all
the symmetry constraints were deduced.

Another challenging issue in solving the BTE [eqn (2)] is the
Dirac delta function estimation in eqn (4). This is convention-
ally accomplished by assuming a Gaussian distribution of the
Dirac delta function with an arbitrarily assigned smearing
factor, which is either constant38 or adaptive.32 However,

Fig. 1 (a) The structure of a bulk PE crystal in the cross-axial plane, and
(b) structure of a single-chain (1-D) PE crystal.
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selecting an appropriate mesh size and the corresponding
smearing factor can be problematic, and until now there was
no well-recognized rigorous way to select the appropriate com-
bination, although this is much less challenging for the 3-D
systems. More importantly, the results of the single PE chain
using Gaussian smearing were found to be quite sensitive to
the choice of the smearing factor even at a large mesh size. So,
we developed the hyperspace tetrahedron method based on
the linear tetrahedron method39,47,48 for the Dirac delta
function (details can be found in the ESI†), the accuracy of
which only depends on the mesh size, therefore avoiding an
arbitrary smearing factor. This method estimates the double
integral

ÐÐ
Qq;q′δðωq � ωq′Þdqdq′, where Q can be any para-

meter related to q and q′, in a hyperspace q⊗q′, which is
discretized subsequently in this higher dimensional spaceÐÐ

Qq;q′δðωq � ωq′Þdqdq′ !
Ð
q�q′ Qq;q′δðωq � ωq′ÞdSq;q′

� �
. This

method gives a finite scattering rate of collinear scattering
events while the conventional linear tetrahedron method
yields an infinite estimation of collinear scatterings which
satisfy the energy conservation intrinsically. Moreover, this
method can avoid the asymmetric problem δ (ωq − ωq′) ≠
δ (ωq′ − ωq) in the linear tetrahedron method, thus keeping the
interchangeability of the three phonons in the scattering prob-

ability Pλ″λ;λ′. Violations might lead to the breakdown of the posi-
tive-definite property of the collision matrix34 and result in a
false divergent thermal conductivity calculation.

Results and discussion

The fully relaxed PE crystal has an orthorhombic structure as
shown in Fig. 1(a). The parameters a, b and c are lattice con-
stants and θ is the chain setting angle (the dihedral angle
between the plane of carbon atoms on a single chain and the
xz plane). The predicted lattice parameters (a = 6.98 Å, b =
4.85 Å, c = 2.55 Å, θ = 43.3°) have been compared with experi-
ments (see the ESI, Table S1†) with the maximum deviation of
less than 2%, verifying the accuracy of the first-principles cal-
culations in predicting the bulk PE crystal structure. As for an
individual PE chain [Fig. 1(b)], the lattice parameter c varies a
little (2.53 Å) compared with that in bulk PE (2.55 Å).

Dispersion relations

Starting from the equilibrium positions, the phonon dispersion
and density of states (DOS, Dp) of both bulk and single-chain PE
were calculated and are shown in Fig. 2(a) and (b).

Fig. 2 (a) Phonon dispersion of a 1-D PE chain (along the chain) at low frequencies. TA1 and TA2 are the two transverse phonon modes vibrating
perpendicular to the chain axis, TWA is the twisting mode and LA is the longitudinal mode. The phonon dispersion of the bulk PE crystal from Γ to Z
is shown as dotted curves while all dispersion curves of the bulk PE from qz = 0 to qz = π/c are projected as the shaded area. Experimental dispersion
curves49,50 of bulk PE are also displayed in comparison. The inset compares the dispersion in the vicinity of Γ on a logarithmic scale. (b) Phonon DOS
of a 1-D chain and bulk PE. (DOS is normalized to make the total number of states equal to one.)
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Although the highest frequency reaches 90 THz (the full dis-
persion is shown in ESI Fig. S2†), most phonons of frequency
>20 THz are caused by the strong localized interactions of C–C
and C–H bonds, which lead to small group velocities and neg-
ligible contributions to the lattice thermal conductivity.
Therefore, only low-frequency dispersion branches (below 20
THz) are shown in Fig. 2. There are 4 acoustic phonon modes
of 1-D PE shown in Fig. 2(a), namely one longitudinal acoustic
(LA), one twisting acoustic (TWA) and two transverse acoustic
(TA) modes. In bulk PE, the corresponding number of modes
is 8 as a result of the split acoustic phonons due to inter-chain
interactions in bulk PE.

For the bulk PE crystal, the good coincidence of predicted
dispersion relations with experiments in Fig. 2(a) validates the
calculated harmonic force constants. The group velocity of LA
phonons along the chain is rather high (17 km s−1, close to
that of diamond and carbon nanotubes), due to the strong
axial C–C covalent bonds, which also account for the large
axial Young’s modulus (330.7 GPa in this study). Such a high
group velocity is expected to boost phonon transport in crystal-
line PE and is also the main reason why a larger crystallinity
often results in a higher axial thermal conductivity.4,9

However, optical phonons with frequency below 5 THz have
rather small group velocities and are intertwined with each
other, which is more prominent when all the dispersion curves
from (x, y, 0) to (x, y, π/c) (x and y are arbitrary) in the Brillouin
zone of bulk PE are projected and shown as a shaded area in
Fig. 2(a). Contrary to frequency gaps in dispersion relations
which lower the chance of phonon–phonon coupling,51 the
phonon dispersion intertwinement makes it more probable
for energy and momentum conservations to be satisfied and
thus enlarges the space of the three-phonon scatterings. On
the other hand, as the bulk PE crystal reduces to a single
chain, the lack of split optical modes in 1-D PE makes the
effective group velocity larger at the corresponding frequencies
(2–5 THz) and the scattering phase space smaller.

The difference in dispersion is more influential on the
transverse modes with long wavelengths, as shown in the inset
of Fig. 2(a). The two TA modes of the 1-D PE chain have quad-
ratic dispersions, while those of the LA and TWA modes are
linear. By comparison, the dispersions of bulk PE are linear
for all the acoustic phonons at small wavevectors. For a fully
relaxed 1-D structure without any internal stress, the 1-D chain
can be considered as an infinitely long rod in the long-wave-
length limit and acoustic vibrations degrade to the classic con-
tinuum model for rods with quadratic transverse disper-
sions.52 Therefore, the dispersion relations of the two TA
modes are expected to be quadratic in a 1-D chain structure,
the same as the ZA mode in 2-D structures such as graphene
and borophene.45 This difference impacts the DOS (Dp) at low
frequencies. From the definition of Dp in ref. 36, the bulk PE
with a linear dispersion relation follows the relation Dp ∼ ω2,
while for the 1-D chain with a quadratic dispersion the relation
is Dp ∼ ω−1/2. As illustrated in Fig. 2(b), the Dp of bulk PE
approaches 0 for frequencies lower than 1 THz, while in 1-D
PE it tends to diverge with the decrease of frequency.

Thermal conductivity of the bulk PE crystal

With the calculated harmonic properties, anharmonic lattice
dynamics calculations were conducted with a careful vali-
dation process of the thermal expansion coefficients (see ESI
Fig. S3†). Thermal conductivity of bulk PE was acquired there-
after. Fig. 3(a) shows the predicted axial κ of the bulk PE
crystal as a function of temperature in all the directions (con-
vergence tests with respect to the mesh size are shown in ESI
Fig. S4†). The results from the exact solution of the BTE are
only around 20% higher than the predictions from the SMRT
model for T > 200 K, but for T < 200 K the difference becomes

Fig. 3 (a) Variation of the axial thermal conductivity of the PE bulk
crystal with respect to temperature. Results from the full BTE and the
single-mode relaxation-time (SMRT) model are shown. The axial thermal
conductivities accounting for boundary scatterings (κzz,b) with different
lamina lengths (lz) are compared with previous measurements.4,9,53 lz =
20 nm is given in the compared experimental study,53 while lz = 30 nm
and lz = 200 nm are fitted from the corresponding experimental studies
in comparison, respectively. (b) The same as (a) for the cross-axial
thermal conductivity (κxx, κyy and κn), where κn is the normal thermal
conductivity to the chain axis. The predicted normal thermal conduc-
tivity of nanocrystallites (κn,b) adopts the crystallite thickness (ln) value of
13 nm also given by ref. 53 The results from the SMRT vary little from
the full BTE solution for the cross-axial thermal conductivity and are
thus not shown. The dotted points are κn values extracted from the
experimental studies.55–57
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much larger. This is because high-frequency phonon modes,
including those at the edge of the Brillouin zone, are not
excited for T < 200 K, which significantly reduces the Umklapp
scatterings and leads to a large underestimation of κ using the
SMRT model.

The predicted axial κzz is 237 W m−1 K−1 at room tempera-
ture, in between the classical MD prediction values of 47 to
310 W m−1 K−1,12,13 but significantly higher than all the reported
experimental values (e.g. 104 W m−1 K−1,9 41 W m−1 K−1 (ref. 4)
and 27 W m−1 K−1 (ref. 53)). This can be due to the non-ideal
crystals in the experiments. The isotope effects on κ are
modest for bulk PE (around 10% κ reduction at 300 K). The
axial crystallite lengths (lz) for the semi-crystalline PE are often
rather small (8–42 nm (ref. 54)). Therefore, the crystallite
boundaries suppress the phonon transport and lead to a much
lower thermal conductivity. Once the phonon boundary scat-
terings from the crystallite boundaries is included using the
same crystallite length (20 nm) measured in ref. 53, through
eqn (5) the calculated κzz,b (axial thermal conductivity with
boundary scattering) matches well with the measurements in
the same study. Since the size of axial crystallites depends on
the draw ratio and the preparation method and may reach as
high as 3 μm,4 experimentally recorded κzz results span rather
widely as shown in Fig. 3(a). By using the crystallite size fitted
from the measured κzz value at 300 K, the calculation results
agree well with the experimental results4,9,53 from different
groups over a wide temperature range. The coincidence
between other predicted κzz,b and the fitted crystallite lengths
and measurements on different PE samples reveals different
estimated sample qualities and the potential for further
improvement.

It is also observed that κ is strongly anisotropic. In Fig. 3(b),
the cross-axial value is almost three orders lower than the axial
value near room temperature. The small κxx and κyy are due to
the weak vdW interactions across chains, which result in low
group velocities and strong anharmonic scatterings. The
average of the predicted cross-axial κxx and κyy (i.e., the normal
thermal conductivity κn) is about 0.45 W m−1 K−1 at room
temperature, two times that from the experiments (∼0.22
W m−1 K−1 (ref. 23 and 58)). This discrepancy becomes more
pronounced at lower temperatures, which is also attributed to
the small sizes of the nanocrystallites (∼13 nm (ref. 53)) in the
semi-crystalline PE samples used in the experiments. Similar
to the axial κ, the inclusion of the boundary effect with the
above thickness retrieves the trend of measured data at
different temperatures, as shown in Fig. 3(b). Note that the
model with boundary scatterings for real PE samples only
serves as a rough approximation at low temperatures. In the
synthesized PE samples, microcrystals are less oriented and
connected by amorphous taut-tie chains. These taut-tie chains
vibrate with large amplitude at high temperatures and arouse
much larger scatterings. The behavior of phonons in real PE
crystals at elevated temperatures awaits further investigation.

The thermal conductivity of 1-D PE was obtained and is
shown in Fig. 4(a) and (b). The solution of BTE takes many
more iteration steps than those for bulk PE, indicating much

more harmonic nature of the 1-D PE chain (ESI Fig. S7†). It is
seen in Fig. 4(a) that the SMRT model significantly underesti-
mates the thermal conductivity of the single-chain PE over the
entire considered temperature range. Such an underestimation
is a result of dominant normal (momentum-conserving)
phonon scattering processes in the single-chain PE as in the
bulk PE at low temperatures or some 2-D materials,59 since the
SMRT simply treats both the normal and Umklapp processes
as dissipation sources.

The large κ of an infinite chain at different temperatures
are predicted to be convergent, and the value at room tempera-
ture is 1400 W m−1 K−1. This value appears modest compared
with the κ values of other carbon-based materials, e.g., gra-
phene and carbon nanotubes,5 but it is close to that of gra-
phene (fully hydrogenated graphene). It is probably due to the
buckled PE chain structure and the H atoms bonded to C.
A reduction in κ due to the hydrogenation in graphene, which
induces buckling of the carbon backbone, has been observed,

Fig. 4 (a) Variations of the axial thermal conductivity of an infinite 1-D
PE chain as a function of temperature, along with the absolute κ contri-
butions from the four acoustic phonon modes and the κ values from the
SMRT model; κ contributions from optical phonons are negligible and
are thus not shown. (b) Variation of the axial thermal conductivity of the
1-D PE chain at 300 K as a function of chain length l. Inset of (b): nor-
malized cumulative axial thermal conductivity with the distribution of
the phonon mean free path Λ.
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and suppressed effective group velocities and additional scat-
terings of low-frequency phonons explain this effect.60,61

The absolute value of κ is almost 4 orders of magnitude
higher than that of amorphous PE and 6 times that of the bulk
PE. This enhancement is mainly caused by the reduction of
scattering phase space due to the disappearance of inter-chain
vdW forces. The modal contributions from each phonon
branch are also shown in Fig. 4(a) and reveal a much smaller
κ contribution from the TA1 and TA2 modes with quadratic dis-
persions compared with the LA mode. This is in sharp contrast
with the dominant role of the quadratic flexural mode (ZA) in
the heat transfer in graphene (contributing as high as 88%25).
Such minor contributions from the quadratic branches are
attributed to the small group velocity at low frequencies, and
more importantly, to the limited phonon lifetimes influenced
by strong normal scatterings, which would be revisited later.

The κ(T ) peaks at around 145 K, which is due to the coun-
terbalance between the heat capacity and the anharmonic scat-
tering, especially for the LA and TA2 phonon modes. At high
temperatures, all the phonons are excited and the heat
capacity is saturated and κ decreases with the increase of temp-
erature (stronger anharmonic scatterings), while at lower temp-
eratures the heat capacity decreases (reduction of excited
phonons impairs thermal transport).

The convergence of κ with respect to the chain length l is
shown in Fig. 4(b) and κ reaches a plateau at around 1 mm.
When l < 10 μm, the predictions match quite well with pre-
vious classical MD simulations.17 The slow convergence of the
κ of 1-D PE with the increase of chain length is explained by
the large phonon mean free paths, as elucidated in the inset of
Fig. 4(b). The half-contributing mean free path (Λ1/2) extends
from 0.12 μm in the bulk PE crystal to 2.2 μm in the 1-D PE.
The results indicate that the κ of 1-D PE is even more sensitive
to the sample size than the bulk PE.

To shed light on the high κ of the PE chain, the cumulative
κ value with respect to the frequency is plotted in Fig. 5(a). It is
found that κ is almost saturated at ∼16 THz, indicating that
the acoustic phonons dominate the thermal transport in the
single-chain PE. Phonons with frequency lower than 5.5 THz
(the cutoff frequency of TA1 and quadratic part of TA2) contrib-
ute only 14% to κ, much smaller compared with the contri-
bution of the quadratic flexural mode (ZA) in graphene (as
high as 88%25). The contrast is mainly due to the limited life-
times of TA phonons of single-chain PE at low frequencies.
The effective spectral lifetimes [defined in eqn (6)] in Fig. 5(b)
show τeff ∼ ω−1 for both TA modes while a much more influen-
tial τeff (ZA) ∼ ω−1.4 in graphene was extracted from ref. 25.

Such limited spectral lifetimes guarantee a finite κ contri-
bution. Using the kinetic theory κ ¼ Ð

DpðωÞCvðωÞv2ðωÞτeffðωÞdω,
although Dp diverges as ω−1/2, v ∼ ω1/2 at small wavevectors, as
shown in Fig. 5(c), and the modal heat capacity Cv reaches the
Boltzmann constant kB. Given the relation τeff (TA) ∼ ω−1, the
κ contribution from low-frequency TA modes is κTA /

Ð
ω�0:5dω,

which is finite with the integration starting from 0. Similarly,
τeff of long-wavelength LA and TWA modes tends to be a constant
and thus κ contributions from these modes are expressed as

κLAðTWAÞ /
Ð
ω0dω. Therefore, both linear and quadratic

phonon modes contribute finitely to κ and lead to a convergent
thermal conductivity in an infinite PE chain. The convergence
behaviors of TAs and TWA modes are consistent with the pre-
vious studies on the “rotator model”,14 in which the potential
energy is proportional to the chain distortion angles. As for
the LA mode, the 1-D Fermi–Pasta–Ulam (FPU) model15 is
often adopted in the literature to simulate the heat transport,
and divergence is sometimes observed. However, contrary to
the 1-D FPU model with either 1-D vibrations62 or nearest-
neighbor interactions,16 the single-chain lattice vibrates in the
3-D space and thus the transverse and twisting motions arise.
The additional inter-mode scatterings significantly increase
the scattering phase space and serve as dissipative sources for
the vibrational energy transport.

Moreover, from the relative κ contribution κ̄λ
P
λ
κ̄λ ¼ 1

� �

from phonons on each dispersion band in Fig. 5(d), one can
easily find that the room-temperature thermal conductivity is
mainly contributed by the LA phonons with frequency ranging
from 11 to 15 THz, as also found in Fig. 4(a) from its dominant
contribution. Over this range below the LA cutoff frequency,
the LA group velocity maintains relatively large. However, LA
modes with lower frequencies (5.5 to 11 THz) and larger group
velocities only account for a small portion of the thermal con-
ductivity. This phenomenon is a result of the strong Umklapp
scattering involving the twisting and transverse modes, e.g.,
LA → TWA + TA1, with the three involved phonons shown as
three small circles on Fig. 5(d). This scattering channel is

Fig. 5 (a) Cumulative axial thermal conductivity of the PE chain with
respect to frequency. (b) Variations of modal effective lifetimes with
respect to frequency (logarithmic scales). (c) Variation of the modal
group velocity (absolute value) with frequency over 0 to 20 THz. (d)
Dispersions with normalized modal contributions to the thermal con-
ductivity shown as the vertical broadening of each phonon branch; the
three small circles represent the three phonons participating in one
possible Umklapp scattering event. The three horizontal dashed lines
located at 5.5, 11 and 15 THz are used to differentiate phonons and their
κ contributions. All theproperties are for 300 K.
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blocked once the LA phonon frequency surpasses double the
cutoff of TWA and TA1, making the LA phonons above 11 THz
dominant in the κ contribution.

It is noted that this Umklapp scattering channel is reported
to be impossible in carbon nanotubes due to the selection rule
imposed by the conservation of angular momentum28

However, due to the C2h
2 symmetry nature of the quasi-1-D PE

chain, there are only two cyclic angular momentum indices,
0 and 1 (±1 are equivalent).63 It is easy to check that any
combination of three phonons satisfies the conservation law of
angular momentum (clearly, a periodicity number 2 is some-
times needed).

The Umklapp scattering is considered to be not only the
main reason for the low κ contribution from phonons lying
within 5.5 to 11 THz, but also the source of convergent κ con-
tribution from long-wavelength phonons. As for phonons
below 5.5 THz, even though these long-wavelength phonons
hardly experience the Umklapp scatterings, there exist other
normal scatterings, for example, the intrinsically satisfied colli-
near scatterings LA → LA + LA, TWA → TWA + TWA and other
noncollinear scatterings (e.g. TWA → TA1 + TA2, LA → TA1 +
TA1 and LA → TA2 + TA2). The large normal scatterings con-
tribute indirectly to energy dissipation by dragging phonons to
the frequency range where the Umklapp scattering is more
probable. Therefore, it leads to finite effective relaxation times
at low frequencies as shown in Fig. 5(b), and eventually a finite
thermal conductivity contribution.

To understand the phonon scattering channels and the
roles of the normal (N) and Umklapp (U) processes in phonon
transport, the scattering matrix P̃ of 3-phonon processes as
defined in eqn (4) is plotted in Fig. 6. The wavevector q ranges
from −G/2 to G/2 (G = 2π/c for single-chain PE) for each
phonon branch. Therefore, for any point (q, q′) found on the
contour map, the third phonon q″ that participates in the scat-
tering can be uniquely determined by the momentum conser-
vation law (q″ also lies in the range from −G/2 to G/2). It is
found that this matrix is not diagonally dominant, which
explains the failure of the SMRT approximation that only con-
siders the diagonal scatterings.36 The scatterings among TA1,
TA2 and TWA are discernably much stronger than those of LA
phonons. In particular, the TWA branch acts as the scattering
center among the acoustic phonons, generating a large phase
space in the lowest 3 acoustic phonon branches. Therefore, the
thermal conductivity contributions from the TA and TWA
branches are much smaller than that from the LA branch.

Moreover, the finite thermal conductivity in single-chain PE
can also be explained by analyzing the N and U scatterings
which can be distinguished in Fig. 6. For example, the
(TA1, TA1) region is divided into three zones by the dashed
line |q + q’| = G/2. Scattering events lying within the two
dashed lines are N and the two triangular areas are dissipative
U processes. This also applies to other regions. Although the
major scatterings of phonons near the Γ point are N processes,
the U processes are not rare for the acoustic phonons in the
single-chain PE, especially for the TA1, TA2 and TWA phonons.
This explains the finite thermal conductivity contributions

from these three branches. As for the LA phonons with small
wavevectors, it is seen that the off-diagonal normal couplings
in the LA phonons remain quite strong, which can indirectly
contribute to the U processes if it follows consecutive scatter-
ing events exemplified with the red arrows. Therefore, the
thermal conductivity contributions from all acoustic phonons
should behave normal and remain finite due to the finite
Umklapp scatterings and the indirect contribution from the
strong normal processes.

Conclusions

We calculated the thermal conductivity of the bulk PE crystal
and the 1-D PE chain by solving the Boltzmann transport
equation with the interatomic force constants from the first
principles calculations. The calculated axial thermal conduc-
tivity of the bulk PE crystal is 237 W m−1 K−1 at room tempera-
ture. Free from the strong anharmonic inter-chain van der
Waals forces, a single PE chain has a much higher thermal con-
ductivity (1400 W m−1 K−1 at 300 K). The thermal conductivity
of the PE chain is convergent, due to the indirect thermal resist-
ance from the normal 3-phonon scatterings and the cross-coup-
lings between different phonon branches. The dominant
thermal conductivity contribution is from the high-frequency
LA phonons, due to the relatively large group velocity and the
low scattering rate with the low-frequency phonons. The
phonon transport analysis sheds light on the molecular-level
design of polymers for enhanced thermal performance.

Fig. 6 Contour plot of the scattering matrix (P̃) among acoustic
phonons. The scatterings between acoustic and optical phonons are
found to be rather small and are thus not shown. Each phonon branch
index contains all q-points with qz from − G/2 to G/2 (G = 2π/c). Each
point is specified as a pair (q, q’). Only the scatterings among the acous-
tic phonons are plotted. The white dashed line in (TA1, TA1) denotes the
boundaries between normal (|q + q’| < G/2) and Umklapp (|q + q’| > G/2)
scatterings. The red arrow exemplifies one consecutive scattering
channel for low-wavevector LA phonons to indirectly experience
Umklapp scatterings.
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