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Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p-n junction
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The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons
(Ep,O) more energetic than the band gap (�Ee,g) to generate power in a p-n junction. We examine the theoretical
electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation
and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its
efficiency. Our findings indicate that a pV material with Ep,O � �Ee,g � kBT , where kBT is the thermal energy,
and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon
population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material
with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016)],
we tune the band gap of graphite within density functional theory through hydrogenation and the application
of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate
the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong
electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a
continued material search.
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I. INTRODUCTION

Solid-state heat harvest, dominated by the thermoelectric
(TE) generator [1], remains inefficient, and this limits its ap-
plication to waste-heat recovery or hostile-environment power
generation, where reliability supersedes efficiency. Moreover,
TE effectiveness vanishes in nanoscale and microscale devices,
where the contact resistance dominates the thermoelectric
effects [2–5]. These factors led to the development of the
thermovoltaic (TV) cell by Span et al. [6], wherein the hot-side
p-metal-n junction in a TE is replaced by a p-n junction
and electron generation events supply the TE current. They
proposed that the TV can slightly exceed the limiting TE
efficiency. However, subsequent investigation [7–10] indicated
the TV cell achieves, at most, the TE efficiency.

Here, the phonovoltaic (pV) is proposed. While the pV
and TV share a similar architecture, the pV utilizes a
nonequilibrium optical phonon population to drive generation.
Indeed, the pV shares more features with a photovoltaic (PV)
cell than it does with a TE or TV cell. Where TE and TV harvest
a flux of equilibrium energy carriers (heat), the PV and pV
cells harvest nonequilibrium energy carriers (the photon and
phonon, respectively) resonant with or more energetic than the
band gap, as shown in Fig. 1. Other nonequilibrium phonon
harvesting schemes have received attention for their ability
to surpass the TE limits in scale or efficiency. These include
the laser cooling of ion-doped materials through anti-Stokes
florescence [11,12], and the use of in situ electron barriers
to recycle phonons emitted during the Joule heating [13,14].
Conversely, the pV cell focuses on power generation.

In a pV cell, native, nonequilibrium (hot) phonons more
energetic than the band gap generate electron-hole pairs at rate
γ̇e-p (where the overdot is used to represent a rate), and a p-n
junction separates them to produce power, as shown in Fig. 1.
In comparison, a PV cell harvests imported, nonequilibrium
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photons more energetic than the band gap to generate electrons.
While excess photon energy is the primary source of entropy
generation in a PV cell, both the excess phonon energy and the
rate of optical phonon downconversion (γ̇p-p) into the acoustic
phonon modes generate entropy in a pV cell.

Section V uses a band-to-band net generation model (A) in
the diode equation to derive the current-voltage relationship
(B) and the efficiency (C) in a pV cell. (D) The results of
this derivation are summarized in Eq. (1), and illustrated in
Fig. 5. To summarize, the extent of the local electron-phonon
nonequilibrium (Carnot efficiency, ηC), the fraction of the hot
optical phonons which generate electrons (γ̇ ∗

e-p) (Sec. III), and
the fraction of phonon energy (Ep,O) preserved by the band gap
(�Ee,g) determine the pV efficiency (ηpV) and its pV figure of
merit (ZpV), i.e.,

γ̇ ∗
e-p = γ̇e-p

γ̇e-p + γ̇p-p
� 1,

ZpV = γ̇ ∗
e-p

�Ee,g

Ep,O
� 1, (1)

ηpV � ηCZpV,

where the Carnot limit in a pV cell is determined by the
difference in the hot optical phonon temperature Tp,O and the
cold, contact temperature Tc, i.e.,

ηC = Tp,O − Tc

Tp,O
. (2)

Few materials exist with an optical phonon mode more
energetic than the band gap [15], and even fewer exhibit an
optical phonon significantly more energetic than kBT at room
temperature, such that the p-n junction effectively separates
generated carriers (where kB is the Boltzmann constant).
However, graphite (graphene), with a phonon cutoff energy of
198 meV [16,17], phonon linewidth dominated by the electron-
phonon interaction (i.e., a large γ̇ ∗

e-p) [18], and a tunable
band gap (through functionalization [19]), make it a suitable
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FIG. 1. (a) The phonovoltaic cell, (b) the energy diagram, and (c)
nonequilibrium in terms of acoustic (Tp,A) and optical (Tp,O) phonon
temperatures and the carrier concentrations (electron ne, hole nh, and
intrinsic ni). An external source excites the optical phonon population
(ṡp,O) in the active region (La), and the resulting nonequilibrium
drives generation (γ̇e-p) and downconversion into acoustic phonons
(γ̇p-p). The junction separates generated electron-hole pairs to create
a current (je) and potential (�ϕa), i.e., power, while acoustic phonons
conduct to the cold contacts (Tc).

candidate. Paper II [20] tunes its band gap to resonate with
the optical phonon energy through hydrogenation (graphame)
[21–23]. We find that the hydrogenation and the resulting shift
from π to σ bonding degrades the electron-phonon coupling,
such that hot optical phonons primarily downconvert into
acoustic phonons rather than generate electrons. However, the
methodology for tuning and investigating a pV material is
developed. Although the search for a new material upon which
to apply the theory developed within this study is challenging,
the potential benefits are shown to be substantial.

This study describes the pV cell. It examines the extent
and limits of the pV regime and establishes the potential
of the device to surpass the TE efficiency. First, a brief
comparison with the TE and PV cells illustrates the unique
features of the pV cell, the importance of nonequilibria, and
the resulting nanoscale requirement (Sec. II). Then, the central
mechanisms of the pV cell, i.e., the electron-phonon and the
anharmonic three-phonon coupling, are discussed (Sec. III).
Next, the Boltzmann transport equation (BTE) and its solution
via the Monte Carlo simulations illustrate the operation of a
pV cell (Sec. IV). An analytical model is developed using
the diode equation, a derived net-generation equation, and
the resulting heat flow (Sec. V). Finally, a self-consistent
hydrodynamic model incorporating two phonon temperatures
validates the analytic model, illuminates additional conditions
required for efficient pV operation, and shows that a high-ZpV

pV outperforms a TE cell (Sec. VI). However, finding a suitable
material remains very challenging.

II. ON THERMOELECTRICS AND PHONOVOLTAICS

In a TE cell, electrons diffuse down a temperature gradient,
form the Seebeck potential, and absorb Peltier heat as they
ascend a potential barrier at the semiconductor-metal junction.
Simultaneously, heat conducts down the temperature gradient
and generates entropy. Despite this, the efficiency grows with
the spatial nonequilibrium across the cell, i.e., the Carnot
efficiency (ηC). The TE figure of merit ZTE and efficiency
ηTE are

ZTE = S2σ

κ
,

ηTE = ηC
(ZTET + 1)1/2 − 1

(ZTET + 1)1/2 + 1 − ηC
, (3)

ηC = Th − Tc

Th

,

where S, σ , and κ = κe + κp are the Seebeck coefficient
and combined electrical and thermal conductivity, and Tc

and Th are the temperature at the cold and hot junctions
of the TE cell (assuming Te = Tp) [1,24]. Importantly, the
local thermal equilibrium between the electron and phonon
populations in a TE ensures coupled electric and thermal
transport (e.g., through the Weidemann-Franz law) and limits
ZTE, such that ZTET > 1 and ηTE > 0.2ηC remain challenging
to significantly surpass in paired p- and n-type TE legs.

Table I compares the pV cell to TE and PV cells, where
FF is the fill factor, and Eph is the photon energy. While
the TE and pV cells both harvest thermal energy, the pV is
more similar to the PV cell, as both harvest a nonequilibrium
population in a p-n junction. The major differences arise
from the downconversion of optical phonons in a pV, and
the transmission of photons with Eph < �Ee,g in a PV cell.
However, as the local nonequilibrium in a pV vanishes, so
does the similarity between pV and PV cells. Instead, as the
spatial, thermal nonequilibrium grows larger than the local
nonequilibrium, the pV cell becomes more similar to a TV (or
TE) cell.

That is, while the generation drives cell operation, the
generated carriers replace, at most, those diffusing down the
temperature gradient. Moreover, despite initially absorbing
a single phonon per pair (Ep,O), the generated electrons
relax to a state of thermodynamic equilibrium, and the net
energy required is given by the Peltier heat (ST ). Finally,
heat conduction rather than downconversion drives entropy
generation and the efficiency limit approaches that of a TE
cell [8], i.e., Eq. (3). When a heat flux is applied to a
pV cell, the local nonequilibrium drives upconversion rather
than downconversion, and the conduction of that heat flux
dominates entropy generation, such that the pV cell is limited
by the TE efficiency and achieves this limit when the local
nonequilibrium vanishes. Thus, a pV cell without a hot optical
phonon population is a TV, which behaves like a TE. Here,
the focus is on the pV regime, where the phonovoltaic behaves
like a photovoltaic.

The pV regime requires that a direct excitation of the
optical phonon population creates a large, local (rather
than spatial) nonequilibrium in the pV cell. Let δe-p be
the electron-phonon cooling length, such that Tp,O − Te �
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TABLE I. A comparison of thermoelectric (TE), phonovoltaic (pV), and photovoltaic (PV) cells and their controlling processes, where
je − �ϕ is the current-voltage curve, and other symbols are defined in the text.

Property TE [1] pV PV [25,26]

Construction
Size μm to cm [5] nm nm to mm
Junction p-metal-n p-n p-n

Processes
Energy source Heat Optical phonon Photon
Power generation Diffusion Generation Generation
Entropy generation Conduction Downconversion, Ep,O > �Ee,g Eph > �Ee,g

Nonequilibrium Spatial Local: Hot phonon Local: Hot photon

Performance
je − �ϕ Linear Exponential Exponential
Figure of merit S2T σ/κ [24] γ̇ ∗

e-p�Ee,g/Ep,O

Quantum efficiency γ̇ ∗
e-p (Eph < �Ee,g)/Eph

Efficiency Eq. (3) [24] FF ηCγ̇ ∗
e-p�Ee,g/Ep,O FF ηQE�Ee,g/Eph [27]

(Tp,O − Tc) exp(−L/δe-p), where the cooling length is on the
order 100 nm in a typical semiconductor [4]. Thus, ηpV/ηC =
γ̇ ∗

e-p exp(−L/δe-p) and achieving the maximum pV efficiency
requires L/δe-p � 1. However, the spatial nonequilibrium
grows to compensate for the loss of the local nonequilibrium,
and this nonequilibrium drives the thermoelectric effects.
Thus, the TE efficiency replaces the pV efficiency as L/δe-p

grows, such that L/δe-p = 1 demarcates a qualitative boundary
between the TE and pV regimes.

An efficient pV cell additionally requires γ̇ ∗
e-p > 0.5,

as small γ̇ ∗
e-p precludes efficient pV operation. Moreover,

small γ̇ ∗
e-p indicates that the phonon-phonon nonequilibrium

vanishes before the electron-phonon nonequilibrium, such that
the pV cell achieves the TE limit most quickly as γ̇ ∗

e-p → 1.
Thus, the third, conduction hindered (CH) region, where the
downconversion of optical into acoustic phonons dominates
energy conversion, and the cell generates entropy rather than
power, is defined by the γ̇ ∗

e-p → 0 and the L/δe-p → 0.
It is beyond the scope of this investigation to present

the quantitative TV and CH regimes. However, Fig. 2
qualitatively illustrates the three regimes: the pV regime,
where a hot optical phonon population relaxes primarily by
generating electrons [η∗

pV = γ̇ ∗
e-p exp(−L/δe-p) > 0.5]; the TV

regime, where the local nonequilibrium vanishes [η∗
TE ≈ 1 −

exp(−γ̇ ∗
e-pL/δe-p) > 0.9]; and the conduction hindered (CH)

regime, where generation cannot supply the TE current (limit-
ing the TV regime) or is dominated by downconversion (lim-
iting the pV regime) [1 − η∗

pV − η∗
TE = exp(−γ̇ ∗

e-pL/δe-p) −
γ̇ ∗

e-p exp(−L/δe-p) > 0.7], where η∗ = η/ηC . Note that these
contours have been chosen following the preceding discussion
and for a pV cell which operates most efficiently in the pV
rather than TE regime.

III. ELECTRON-PHONON AND PHONON-PHONON
COUPLINGS

As discussed, the fraction of hot optical phonons which
relax by generating electrons rather than acoustic phonons
(γ̇ ∗

e-p) largely determines the performance of a pV cell. The
electron-phonon (e-p) and anharmonic phonon (p-p) couplings
drive these phenomena. This section presents the ab initio

approach to the couplings and their kinetics from perturbation
theory, as used in Paper II [20].

A. Electron generation

As a phonon displaces the atoms in a crystal, it shifts
the potential field experienced by the electrons, and thus
interacts with them. For a strong electron-phonon coupling,
the displaced atoms must substantially affect the most en-
ergetic occupied electron states. For example, through the
displacement of a linear chain of atoms, the bound electron
state is distorted as the interatomic distance changes. However,
for a scattering event to occur, not only must the phonon
couple strongly to the bound state, but the resulting state must
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FIG. 2. Qualitative regimes of a pV cell for variations in L/δe-p

and γ̇ ∗
e-p . The pV regime requires (i) a device smaller than the

electron-phonon cooling length δe-p to sustain a nonequilibrium
between the optical phonon and electron populations (NE-e), and
(ii) that generation dominates downconversion (γ̇ ∗

e-p > 0.5). When
the local nonequilibrium vanishes (E-e), the pV cell behaves as a TE
(TV regime). When generation is much slower than downconversion
(γ̇ ∗

e-p < 0.5), conduction hinders or dominates the device operation
(CH regime).
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FIG. 3. The electron-phonon coupling during phonon absorption.
(a) The unperturbed system is in equilibrium with an electron in the
highest occupied state (HOS, |ke,v〉) and no electron in the lowest
unoccupied state (LUS, |k′

e,c〉). (b) A phonon is excited (kp,α),
which displaces the atoms by ukp,α

and perturbs the HOS, such that
it overlaps with the LUS. (c) The electron in the perturbed HOS
and excited phonon are annihilated and an electron is created in
the highest occupied state, as shown in (c) ke space and in (d) the
Feynman diagram.

overlap significantly with an unbound, conduction state, and
the scattering event must conserve momentum and energy.
This is illustrated in Fig. 3.

Perturbation theory provides the quantitative description of
this qualitative illustration, where the Hamiltonian (H ) is

H = H ◦ + He-p

= H ◦ +
∑

ke

∑
kp,α

1

2

(
�

2ωkp,α〈m〉
)1/2

× ∂ϕ

∂ukp,α

(
c
†
ke+kp

cke
akp,α + H.c.

)
, (4)

where H ◦ is the ground-state Hamiltonian and ϕ is the
Kohn-Sham potential within density functional theory [28].
The factor of 1

2 accounts for spin degeneracy, and the next
term represents the displacement caused by a single phonon
with wave vector kp, polarization α, frequency ω, moving
atoms of average mass 〈m〉. This, times the derivative in
potential with respect to the atomic displacement (ukp,α),
is the linear expansion of the electron-phonon interaction
potential. The final term describes the phonon-absorption and
phonon-emission (the Hermitian conjugate, or H.c.) processes,
where cke

(akp
) and c

†
ke

(a†
kp,α) are the annihilation and creation

operators for an electron (phonon) with momentum ke (kp and
polarization α).

From the Fermi golden rule, the interaction rate depends on
the perturbing Hamiltonian (e.g., He-p) operating on the initial
state and overlap of this perturbed state with the final state.
That is, the interaction element is [28]

M
(e±p,α)
ij (ke,kp)=

(
�

2ωkp,α〈m〉
)1/2

〈ke ± kp,j | ∂ϕ

∂ukp,α

|ke,i〉,

(5)

where the positive sign corresponds to the absorption and the
negative to the emission of a phonon, and the scattering rate is

γ̇
(e±p,α)
ij (ke,kp)

= 2π

�

∣∣M (e±p,α)
ij (ke,kp)

∣∣2

× δ
(
Ee,i,ke

− Ee,j,ke+kp
± �ωkp,α

)

× fe,i,ke

(
1 − fe,j,ke+kp

)(1

2
∓ 1

2
+ fp,α,kp

)
, (6)

where Ee,i,ke
and fe,i,ke

are the energy and population of an
electron in band i with momentum ke and fp,α,kp

is the phonon
population.

The electron population terms ensure that scattering does
not occur between two occupied states or two unoccupied
states, such that scattering only occurs between an occu-
pied and unoccupied state separated by the phonon energy
(�ωkp,α). Thus, scattering is restricted to the valence states
and conduction states (i,j = v,c) and dominated by interband
interactions (i 
= j ). Moreover, when �Ee,g > Ep,O, the
scattering rate vanishes unless intraband (i = j ) interactions
contribute substantially, i.e., when the Fermi surface is within
kBT of the conduction or valence bands and Ep,O � kBT .
This is rare in a typical semiconductor, unless it is subjected
to an exceptional doping intensity (becoming semimetallic).
Thus, the electron-phonon interaction typically contributes to
the phonon linewidth only in semimetals and metals. In Paper
II, a semiconductor is sought with Ep,O � �Ee,g � kBT in
order to overcome this tendency [20].

However, finding or creating a material with a sufficiently
energetic optical phonon and tuning to its band gap to that
phonon energy, Ep,O � �Ee,g � kBT , is not sufficient. An
efficient pV also requires a strong intraband coupling, i.e., that
the lowest unoccupied states (LUS) and highest unoccupied
states (HOS) overlap significantly, and that the optical phonon
perturbs these states substantially, as shown in Fig. 3 and
described in Eq. (5). Otherwise, the phonon-phonon coupling
described in the following section dominates the linewidth
and γ̇ ∗

e-p vanishes. Thus, developing a pV material is very
challenging.

For example, the tuned graphene structure investigated
in Paper II [20] achieves Ep,O � �Ee,g � kBT , but
exhibits hindered electron-phonon coupling. While the
electron-phonon coupling dominates the optical phonon
linewidth in graphene, hydrogenation transforms the π bonds
to σ -type bonds and reduces the overlap between the LUS
and HOS. As its phonon-phonon coupling remains strong,
any hot optical phonon population excited in hydrogenated
graphene will primarily downconvert into acoustic phonons.
This competing, phonon-phonon coupling is discussed next.
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B. Optical phonon downconversion

The crystal Hamiltonian determines the phonon dynamics
and the phonon-phonon couplings, and it is [26,29]

〈ϕ〉 = 〈ϕ〉o + 1

2!

∑
ijxy



xy

ij dx
i d

y

j

+ 1

3!

∑
ijkxyz

�
xyz

ijk dx
i d

y

j dz
k + . . . , (7)

where 〈ϕo〉 is the equilibrium crystal potential, dx
i is the

displacement from equilibrium of atom i in the x (Cartesian)
coordinate, and 
ij and �ijk are the second- and third-order
force constants.

The second-order interaction determines the phonon dy-
namics, i.e., the phonon frequencies (ωkp,α) and eigenvectors
(εkp,α), while the anharmonic (third-order and higher) interac-
tions are responsible for the upconversion and downconversion
of phonons, the thermal expansion of the lattice, and the
temperature dependence of the phonon frequencies. As the
pV cell prefers slow downconversion, i.e., low anharmonicity,
materials with small thermal expansion, etc., are desired.

Typically, the fourth-order and higher interactions are
masked by the third-order coupling [30]. From the Fermi
golden rule, the rate at which a phonon (|kp,α〉) downconverts
into two phonons (|k′

p,α′〉 and |k′′
p,α′′〉) [31] is

γ̇p-p(kp,α) = 1

Nk′
p

∑
α′α′′k′

p k′′
p

�π

16

∣∣�kp k′
p k′′

p

αα′α′′
∣∣2

× δkp k′
p k′′

p
δ
(
ωkp,α − ωk′

p,α′ − ωk′′
p,α′′

)
× (f ′

p + f ′′
p + 1), (8)

where fp is the phonon occupancy, and the interaction element

�
kp k′

p k′′
p

αα′α′′ is

�
kp k′

p k′′
p

αα′α′′ =
∑
ijk

∑
xyz

�
xyz

ijk uxi
kp,αu

yj

k′
p,α′′u

zk
k′

p,α′′

× exp[i(kp · r i + k′
p · rj + k′′

p · rk)], (9)

and r i is the location of atom i. Here, uxi
kp,α is proportional to

the displacement of atom i in the x direction caused by the
phonon |kp,α〉, i.e.,

uxi
kp,α =

εxi
kp,α

(Miωkp,α)1/2
. (10)

Unlike the electron-phonon coupling, which decreases
with temperature (due to the fermionic electrons blocking
scattering), the phonon-phonon coupling increases with tem-
perature (due to the bosonic phonons enhancing scattering).
This, among other factors, tends to push the pV cell towards
low-temperature operation. However, for an energetic optical
phonon, the scattering rate only increases substantially at high
temperature.

C. Evaluating γ̇e- p, γ̇ p- p, and γ̇ ∗
e- p

The fraction of hot optical phonons which relax by
generating an electron rather than a pair of acoustic phonons

(γ̇ ∗
e-p) follows from the electron-phonon and phonon-phonon

scattering rates [Eqs. (6) and (8)]. While Eq. (8) gives the rate at
which an optical phonon mode with kp = 0 and α (fp,O = 1)
downconverts, Eq. (6) only provides the rate at which that
optical phonon mode generates an electron with momentum
ke in band j . However, after summation over ke for i,j ∈ c,v,
Eq. (6) gives the rate of recombination or generation driven by
that optical phonon mode, such that the net generation due to
a zone-center phonon, ṅe(kp = 
,α), is

ṅe(
,α) =
∑

ke

[
γ̇ (e+p,α)

cv (ke,
) − γ̇ (e −p,α)
vc (ke,
)

]
.

(11)

γ̇ ∗
e-p follows

γ̇ ∗
e-p(
,α) = ṅe(
,α)

ṅe(
,α) + γ̇p-p(
,α)

= ṅe(
,α)

ṅe(
,α) + ṅa(
,α)
, (12)

where ṅa is the net rate of acoustic phonon-pair generation.
This quantity limits the quantum efficiency of the pV, i.e., the
number of electrons extracted for each optical phonon excited,
as discussed in Sec. V.

In Paper II, both the electron-phonon and phonon-phonon
couplings for the 
-point phonons (kp = 0) are evaluated
within density functional perturbation theory (DFPT) using the
ab initio QUANTUM ESPRESSO code, which provides dynamical
matrices, the electron-phonon matrix elements, and third-order
force constants on a rough mesh of ke and kp points. Through
the Fourier interpolation throughout the first Brillouin zone,
the components required to evaluate Eqs. (6) and (8) are
calculated on a fine mesh of ke and kp points. Then, the
integrations are carried out (Paper II [20] gives the details).

IV. BOLTZMANN TRANSPORT

The nanoscale pV cell can exhibit several forms of nonequi-
libria. For example, the local nonequilibrium between electron
and phonon populations drives the net generation of electrons,
the local nonequilibrium between optical and acoustic phonon
populations drives the net downconversion of optical phonons,
and the local nonequilibrium within the electron system
affects transport. When the device is sufficiently long, a
spatial nonequilibrium grows within these populations and
the aforementioned local nonequilibria vanish. Thus, the
investigation of a pV cell begins with the Boltzmann transport
equation (BTE), which models spectral transport of an energy
carrier (i) with momentum p through its occupancy fi( p).
As such, it demonstrates the role of the electron-electron
nonequilibrium and spatial nonequiblirium within a pV cell.

The electron BTE, i = e, is [26]

∂fe

∂t
+ ue · (∇xfe) + −ec∇xϕe · ∇pfe

= ∂fe

∂t

∣∣∣∣
s

+ ṡ ≈ γ̇e

(
fe − f ◦

e

) + ṡe, (13)

where the terms, in order, describe transient accumulation,
the free flight of electrons with velocity ue, the acceleration
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by an electric field (where ϕe is the electric potential and ec

the electron charge), the in and out scattering of electrons
at location x, and the generation (ṡe) of new electrons with
momentum p. The scattering term is often approximated
through the relaxation-time approximation (RTA), where f ◦

e

is the equilibrium occupancy and γ̇e is the total scattering rate.
This approximation assumes that there is near equilibrium
within the electron population, and it enables the integration
of the BTE for various device level models.

Furthermore, the RTA provides the average distance be-
tween electron collisions (mean-free path) λe = uF /〈γ̇e〉,
where uF is the Fermi velocity and 〈γ̇e〉 is the average electron
scattering rate. When the device is very small compared
to the mean-free path (L � λe), the transport is ballistic
and generated electrons are harvested without relaxing. For
L � λe, the transport is diffusive, electron distributions are
near equilibrium (fe � f ◦

e ), and the RTA is valid. This section
presents an ensemble Monte Carlo (MC) simulation of the
BTE in order to investigate the electron population in the active
region of a pV cell and to describe the electron transport in a
pV cell.

A. Ensemble Monte Carlo simulations

The MC method statistically solves the BTE by simulating
many electron superparticles freely accelerating between
electron-phonon scattering events. The time between scatter-
ing events and the scattering event which occurs are chosen
statistically while preserving the kinetics of the system [32].

Here, only the scattering of electron with the optical and
acoustic phonon population is considered. Furthermore, the
kinetics within the MC model assumes isotropic, parabolic
bands and a constant electron-phonon coupling element
[Me−p,α

cc (ke,kp) = Mp,α] near the band edge. Consider Eq. (6)
integrated over kp from the perspective of conduction elec-
tron with momentum ke in a nondegenerate semiconductor
(fe,c,ke

= 1 and fe,c,ke±ke
= 0). For a dispersionless optical

phonon, this gives

γ̇ (e±p,O)
cc (ke) =

∑
kp

γ̇ (e±p,O)
cc (ke,kp)

= 2π

�
|Mp,O|2De(Ee,ke

± Ep,O)

×
(

1

2
∓ 1

2
+ fp,O

)
, (14)

where the density of states and electron dispersion are

De(Ee) =
∑

kp

δe(Ee) =
(me,e

�2

)3/2
E1/2

e , (15)

Ee,ke
= �

2|ke|2
2me,e

, (16)

and me,e is the effective mass of a conduction band electron.
The scattering rate of an electron with an acoustic phonon

of constant speed up,A gives a similar result, only with a
different phonon energy (Ep,A = �|kp|up,A rather than Ep,O).
This energy must conserve energy and momentum, i.e., we

require

Ee,ke+kp
= Ee,ke

± Ep,A,

�
2(ke + kp)2

2me,e

= �
2k2

e

2me,e

± up,A�kp,

s.t. kp = 2
(
±me,eup,A

�
− ke

)

and Ep,A = 2up,A(±keme,eup,A − �ke), (17)

where ki = |ki | and the kp,A = 0 solution does not represent
a scattering event. The MC model does not treat the acoustic
phonon scattering as elastic, but uses the above equations to
determine the final state.

Additionally, a fast generation rate (ṡe) is prescribed in
the active region and the energetic optical phonon is given a
hot temperature (Tp,O,h). The remaining optical and acoustic
phonon modes are given a cold temperature equal to the contact
temperature Tc.

As ensemble MC simulates thousands of electrons in one
superparticle, less than one superparticle is typically generated
or annihilated within a single time step (1 fs) in a particular
location bin (0.5 nm). This MC model carries the remainder
from one time step to the next, such that over many time steps
the number of generated superparticles accurately represents
the number of generated electrons. New electrons are given an
initial energy through the implicit solution of

r

∫ ∞

0
De(Ee)De(Ee − Ep,O)dEe

=
∫ Ee

0
De(Ee − Ep,O)dEe (18)

for Ee, where r is a uniformly distributed random number and
De(Ee)De(Ee − Ep,O) is proportional to the net-generation
rate (see Sec. V A.) The initial momentum direction is
randomized in the isotropic semiconductor. A typical Ohmic
contact is modeled at x = 0, and electrons are reflected at
x = L/2, where L is the length of the cell, to represent an
ideal junction under short-circuit conditions. This is illustrated
in Fig. 4.

The simulations are run for the material parameters listed in
Table II. These parameters are similar to those of the partially
hydrogenated graphite [20]. Note that the generation rate is
proportional to the cell length. This ensures that in a long
cell with L � λe, i.e., the diffusive regime, the change in
the carrier concentration is independent of L. This simulation
does not accurately track or predict the cell performance, as
it is not self-consistent. However, it determines the extent of
the electron relaxation and the transport regime (ballistic or
diffusive) for the generated electrons as a function of L. Most
importantly, it illustrates the operation of a pV cell.

B. Results

Figure 4 shows the spatial distribution of the (a) electron
density and (b) temperature and (c) the local distribution
electron energy for variations in the cell length. Electrons
are generated within a small active region near the junction.
The junction reflects all electrons, forcing electrons towards
collection at the contact. Note the concentration gradient
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FIG. 4. Spatial distributions of the (a) electron density and (b)
temperature, and (c) local energy distributions within the active
region in 400- and 40-nm pV cells. The generation rates are scaled
by 1/L to demonstrate that transport is partially ballistic in the
40-nm cell. The generation of cold electrons reduces the average
energy of the population, but the nonequilibrium within the electron
population remains small. The 400-nm cell, in comparison, exhibits
diffusive transport, a negligible change in the electron temperature,
and equilibrium occupancy within the electron population.

formed in the short cell is half of that formed in the long
cell. Indeed, the concentration gradient required to drive the
generated electrons out of the cell is reduced as L approaches
λe and the transport regime becomes ballistic.

TABLE II. Material and parameters used in the MC simulations,
where me is the electron mass. Parameters are chosen to represent
partially hydrogenated graphite.

MC parameters

me,e 0.01 me �Ee,g 150 meV
Ep,O,1 198 meV Ep,O,2 154 meV
|Mp,O|1 140 meV |Mp,O|2 110 meV
up,A 1000 m/s |Mp,A| 50 meV
La 1/5L ṡe 0.1/L nm-cm−3 ps−1

Tc 300 K Tp,O,h 600 K

Additionally, as these electrons have a smaller kinetic
energy than the thermal average, 3kBTc/2, they cool the cell.
However, the hot optical phonon population also heats the
electron population through intraband interactions. In the short
cell, the cooling effect dominates, while in the long cell,
the two effects balance. In sufficiently long cell, intraband
interactions should overcome the cooling and induce a spatial
nonequilibrium. Regardless, the electron population in both the
40- and 400-nm cells remains near the equilibrium distribution.
Indeed, the RTA remains valid, even as the electron transport
becomes ballistic.

In the following sections, macroscale models use the RTA
to take moments of the electron BTE. While the MC results
support this approach, there are restrictions to its validity.
Primarily, at lower temperatures the mean-free path grows
substantially. Moreover, under an applied voltage, a significant
number of electrons flow over the junction, gain a large kinetic
energy, and these hot electrons are in nonequilibrium with the
cold electron population. However, the mean-free path of these
hot electrons is relatively short. In general, the RTA and the
resulting moments of the BTE remain valid.

V. ANALYTIC EFFICIENCY AND FIGURE OF MERIT

With the local nonequilibria limited to the electron-phonon
and optical-acoustic phonon populations, a simple analytical
model is developed in order to achieve the following goals:
(i) develop a figure of merit, (ii) determine the temperature
dependence of the pV cell, and (iii) provide accurate predic-
tions and fundamental insights.

The ratio of the power produced (Pe = Jeϕa , where Je is the
current extracted across a potential ϕa) to the heat flow applied
(Qin) determines the pV efficiency (ηpV = Pe/Qin). In an ideal
junction (i.e., one with no excess current loss, e.g., that from
surface recombination or junction tunneling) with negligible
internal resistance, the current produced is proportional to the
net generation (ṅe) within the cell volume (V ), i.e, Je = ecṅeV .
The energy flow required to produce this current is Qe =
Ep,OJe. However, additional heat flows from the hot optical
phonon population into the acoustic branches due to the net-
downconversion rate (ṅp,A) within the cell volume, such that
Qp,A = Ep,Oṅp,AV . Assuming the interband electron-phonon
and phonon-phonon interactions dominate the optical phonon
lifetime, the controlling equations become

Pe = Jeϕa = ecṅeV ϕa, (19)

Qin = Qe + Qp,A = Ep,O(ṅe + ṅa), (20)

ηpV = Pe

Qin
= ecϕa

Ep,O

ṅe

ṅe + ṅp,A
. (21)

Thus, determining the efficiency and power output of a pV
cell requires the relationship between the current (or net
generation) and voltage.

Before deriving a model for this relationship, consider the
diode equation

Je(ϕa) = Jo − Jd (ϕa), (22)

where Jo = Je(0) is the short-circuit current and Jd is the
dark, adverse current driven across the junction by a potential
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(or, alternatively, the net recombination driven by the in
electron and hole Fermi levels induced by the potential). In
an open circuit, no current leaves the cell (Je = 0). Instead,
the potential develops within the cell until it reaches the
open-circuit voltage (�ϕoc) and the dark current balances with
the short-circuit current generated by the hot optical phonon
population.

Note that short circuiting the pV cell (ϕa = 0) and max-
imizing the current, or open circuiting the cell (Je = 0) and
maximizing the voltage generates no power. The maximum
power and maximum efficiency conditions reside between
these limits. The fill factor (FF ) quantifies the fraction of power
achieved by a diode to the product of the short-circuit current
and open-circuit voltage, i.e.,

FF = Pe

Jo�ϕoc

. (23)

The fill factor is limited to between 1
4 and 1, where the former

requires a linear current-voltage curve and the latter requires a
square curve. Next, analytic equations for the current-voltage
relationship of an ideal pV cell and the resulting performance
are derived.

A. Net generation

The electron-phonon interband interaction falls into the
class of band-to-band recombination and generation events,
which also includes radiative decay. A band-to-band recom-
bination rate (ṅe,b-b) depends on the number of conduction
electrons (ne) which can recombine and the number of empty
valence states, i.e., holes (nh), with which they can recombine.
Thus, the generation or recombination rate is expected to be
proportional nenh. Noting that no net recombination occurs
under equilibrium, when nenh = n2

i and ni is the intrinsic
electron and hole concentration. Thus, the net band-to-band
recombination rate is

ṅe,b-b = ab-b
(
nenh − n2

i

)
, (24)

where ab-b is a coefficient which depends on the interaction. We
show below that the net rate of generation due to the electron-
phonon interaction exhibits a similar form when derived from
the Fermi Golden rule [Eq. (6)].

Consider Eq. (6), integrated over kp for a dispersionless
optical phonon (�ωkp,O = Ep,O) with a constant interaction

strength for generation [Mg = M
(e+p,O)
vc (ke,kp)] and recombi-

nation [Mr = M
(e−p,O)
cv (ke,kp)] events. Further, assume there

is equilibrium within the electron, hole, and optical phonon
populations and thermal equilibrium between the electron and
hole populations. Finally, assume a nondegenerate semicon-
ductor where Maxwellian statistics hold, i.e., the population
of the the electron (i = e), hole (i = h), and phonon (i = p)
are

fi(Ei,T ) = exp

(
−EF,i − Ei

kBT

)
� 1, (25)

where Ei and T are the population energy and temperature,
and EF,i is the Fermi energy (EF,p = 0).

Under these assumptions, the generation [γ̇e-p,g(Ee)] and
recombination [γ̇e-p,r (Ee)] rates for an electron at initial energy

Ee are

γ̇e-p,g(Ee) = ae-p,g

∫
dkpδE(Ee − E′

e + Ep,O)

× fp,O(Ep,O,Tp,O),
(26)

γ̇e-p,r (Ee) = ae-p,r

∫
dkpδE(Ee − E′

e − Ep,O)

× fe(Ei,T )fh(Ef ,T ),

where ae-p,i = π�|Mi |2/(Ep,O〈m〉). Using the definition of the
density of states, Di(Ei) = ∫

dkpδE(Ei), reduces the rates to

γ̇e-p,g(Eh) = ae-p,gDe(Ef,h)fp,O(Ep,O,Tp,O),

γ̇e-p,r (Ee) = ae-p,rDh(Ef,i)feh(Ep,O,Tp,O), (27)

where feh uses the differences in Fermi energy EF,eh =
�EF = EF,e − EF,h, and Ef,i = Ep,O − �Ee,g − Ei .

Integrating over the allowed electronic states gives the total
rate of generation (ṅe,g) and recombination (ṅe,r ). Let D be the
integral of De(Ee)Dh(Eh) over 0 � Ee � Ep,O − �Ee,g and
Eh = Ep,O − �Ee,g − Ee, then the net rate of generation is

ṅe = ṅe,g − ṅe,r

= ae-p,gDfp,O(Ep,O,Tp,O) − ae-p,rDfeh(Ep,O,T ). (28)

As the net generation must vanish under equilibrium
(Tp,O = T ), we require ae-p,g = ae-p,r .

This model, like the band-to-band model, is driven by
the temperature difference Tp,O − T . However, the population
terms fp,O(Ep,O,Tp,O) − feh(Ep,O,T ) rely on Ep,O rather than
�Ee,g , as in the band-to-band model (ṅe,b-b), i.e.,

ṅe,b-b ∝
[

exp

(
− �Ee,g

kBTp,O

)
− exp

(
−�Ee,g − �EF

kBT

)]
, (29)

ṅe ∝
[

exp

(
− Ep,O

kBTp,O

)
− exp

(
−Ep,O − �EF

kBT

)]
. (30)

This difference leads to a substantial divergence in the
predicted behavior, and most notably, the open-circuit voltage.
Noting that the �EF = ecϕa under the current assumptions,
i.e., negligible internal resistance in an ideal junction, the
open-circuit voltage [ṅe(�EF = ec�ϕoc) = 0] is

�ϕoc,b-b = ηC�Ee,g/ec, (31)

�ϕoc = ηCEp,O/ec, (32)

where ηC = 1 − T/Tp,O.
Typically, the open-circuit voltage in a photovoltaic cell

is limited by the band gap [33] rather than the photon
energy. While it has been proposed that harvesting electrons
before they relax enhances the open-circuit voltage [34],
this has not been realized experimentally. In a pV cell, a
similar phenomenon is expected, where the relaxation of the
generated carriers towards the band edge ensures the same,
band-gap-limited behavior. Therefore, the analytical model
uses the band-to-band model for net generation.
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B. Current-voltage curve

As previously discussed, the current-voltage relationship is
proportional to the net generation, i.e.,

Je(ϕa) = ecVaṅe = ecVaae-p,b-b

[
exp

(
− �Ee,g

kBTp,O

)

− exp

(
−�Ee,g − ϕa

kBT

)]
, (33)

where ae-p,b-b ensures that the short-circuit band-to-band
current matches the derived model in Eq. (28). The maximum
power (Pm) and the corresponding voltage (�ϕm) are found
by maximizing Pe(ϕa) = Je(ϕa)ϕa . The maximization gives

�ϕm = kBT

ec

{
W

[
exp

(
1 + �ϕoc

kBT

)]}
, (34)

where W (z) is the principal solution for w in z = wew

and limx→∞ W [exp(1 + x)] = x. That is, as the open-circuit
voltage grows large in comparison to kBT , the �ϕm approaches
the open-circuit voltage. Intuitively, this also implies the
current (Jm) approaches the short-circuit current and the fill
factor approaches unity under the same condition. While the
expressions for Jm and Pm become progressively more com-
plicated and less insightful, numerical investigation confirms
this. Indeed, the fill-factor expression corresponding to the
maximized power condition is well approximated by

FF = Jm�ϕm

Jo�ϕoc

� 1 − 3

4
exp(−0.1ηC�E∗

e,g)

for ηC�E∗
e,g < 10, (35)

where �E∗
e,g = �Ee,g/kBT and the limits 1

4 � FF � 1 are
reproduced, and this equation confirms these suppositions.

C. Efficiency

From Eq. (31), the fraction of the optical phonon energy
achieved by the pV cell in an open circuit is

ηϕ = ec�ϕoc

Ep,O
= ηC

�Ee,g

Ep,O
. (36)

Additionally, the number of electrons extracted per optical
phonon (quantum efficiency) follows from Eqs. (20) and (33):

ηQE = Jo

Jp,O
= ecVaṅe

ecVa(ṅe + ṅa)
= ṅe

(ṅe + ṅa)
= γ̇ ∗

e-p, (37)

where γ̇ ∗
e-p is the fraction of optical phonon scattering events

which result in the generation of an electron [from Eq. (12)].
Thus, the efficiency for a square current-voltage curve
(FF = 1) is

ηpV,max = ηCγ̇ ∗
e-p

�Ee,g

Ep,O
= ηCZpV, (38)

where ZpV = γ̇ ∗
e-p�Ee,g/Ep,O is the pV figure of merit.

Unfortunately, the analytic expressions for the maximum
efficiency condition is much more complicated than the
already complex expressions for �ϕm and Pm. Thus, a
realistic and maximized analytic efficiency offers little insight.
However, consider the following conservative procedure to
derive an analytic and insightful efficiency relation (ηpV).

The maximum heat flow required by a pV cell occurs in the
short-circuit condition, where ṅe is maximized. Assuming Qin

does not strongly depend on ϕa and remains near this limit, we
can derive a useful relation. If Qin does not depend on ϕa , then
the maximum power and efficiency conditions coincide. Thus,

ηpV = ηCZpVFF � ηCZpV
[
1 − 3

4 exp(−0.1ηC�E∗
e,g)

]
, (39)

where FF is approximated as in Eq. (35).
Assuming a constant Qin presumes that either γ̇ ∗

e-p → 0
or FF → 1 (ηC�E∗

e,g → 1). For large γ̇ ∗
e-p and small FF , the

heat decreases quickly with increasing ϕa (and decreasing Je).
In this case, the maximum efficiency and power conditions
diverge, and the maximum efficiency exceeds Eq. (39). A
parametrized investigation of Eq. (39) and its implications
follows, and in the next section we look at the divergence of
this relation from the results of a hydrodynamic model.

D. Results

Figure 5 depicts Eq. (39), showing ηpV/ηC for variations in
ZpV and ηC�E∗

e,g . In order to surpass ηTE, a pV must achieve
ηC�E∗

e,g > 1, unless ZTET > 0.7. Thus, an efficient pV cell
requires either an optical phonon resonant with its band gap
and a linewidth dominated by the electron-phonon coupling, or
it requires extreme nonequilibrium and a band gap significantly
more energetic than the thermal energy. That is, unless ZpV is
large, the pV is limited to low-temperature operation. However,
if the ZpV and nonequilibrium are large, the pV cell approaches
the Carnot limit.

∞

10.0

7.5

HM300 K

5.0

2.5

0.0
0.2 0.4

CH Regime pV Regime

0.6 0.8 1.00.0

0.10.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ηpV  / ηC

ZpV

η C
 ∆

E e,
g 
/ k

B
T

η TE
  / 

η C
 , 
fo

r Z
TE

 =
 1

FIG. 5. The pV efficiency as a function of the nonequilibrium
ηC�Ee,g/kBTc and the pV figure of merit ZpV [Eq. (39)]. Significant
nonequilibrium is required to outperform a TE with ZTET = 1, unless
the figure of merit exceeds 0.7. When Tc vanishes, the pV cell achieves
ηpV = ηCZpV � 1. When ZpV → 0, the efficiency vanishes, and when
ηC → 0, the efficiency approaches 0.25ηCZpV. The hydrodynamic
model (HM) simulations use a standard set of parameters slightly
exceeding the TE cell.
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TABLE III. Material and parameters used in hydrodynamic
model simulations at Tc = 300 K. Parameters are chosen to rep-
resent a hydrogenated graphite pV cell. Parameters are defined in
Appendix A.

Figure of merit

Ep,O 198 meV �Ee,g 150 meV
ae-p 20 cm−9 s−1 ap-p 20 cm−9 s−1

τe-p,E 20 ps �Ee,g/Ep,O 0.75
γ̇ ∗

e-p 0.5 ZpV 0.38

Transport
ne,v 7.1 × 1018 cm−3 ne,c 7.1 × 1018 cm−3

μe 0.2 m2/V s εe 12
κp,A 0.3 W/m K κp,O 0.001 W/m K

Cell
L 50 nm La 10 nm
ηC 2/3 �EF,p-n 150 meV
SR w/o

VI. HYDRODYNAMIC EFFICIENCY AND OPERATION

The analytical model requires a number of assumptions
including fast transport and no surface recombination (ηQE =
γ̇ ∗

e-p). A numerical, hydrodynamic model (given in Ap-
pendix A) is used to validate Eq. (39), relax its assumptions,
and reveal additional cell parameters which influence the
pV efficiency. The hydrodynamic model considers the same
nonequilibria as the analytic model, i.e., local e-p and p-
p nonequilibria, but adds the spatial nonequilibria within
electron and phonon populations. It takes the first three
moments of the electron BTE (continuity, momentum, energy),
includes the conduction of optical and acoustic phonons, and
uses the Poisson equation to ensure self-consistency.

This section uses the parameters baseline given in Ta-
ble III, and then varies important parameters from among
this collection to investigate their effects. The parameters
are chosen to reflect a functionalized graphene material
utilizing its E2g optical phonon mode. The ZpV is chosen to
examine a moderate pV material which requires significant
nonequilibrium to surpass a TE cell. Parameters are varied to
both validate the analytic model, examine what is required for
such a material to surpass the TE limit, and investigate pV cell
operation under extreme nonequilibrium.

The length (L) is sufficiently small and the transport of
the electron (μe), hole (μh), and acoustic phonon (κp,A)
are sufficiently fast to ensure that these populations do not
equilibrate with the optical phonon mode (limited spatial
nonequilibrium). As long as this condition is satisfied (i.e.,
L � δp-p � δe-p the pV behavior is independent of these
parameters. However, the slow optical phonon transport (κp,O)
influences pV efficiency when La/L < 1, as it restricts the hot
optical phonon population to the active region. In the standard
cell, the active length (La), i.e., the region where the optical
phonon population is excited, is restricted to the junction itself,
which is approximately 10 nm, and the diode is doped such that
the difference between the Fermi energy in the p and n regions
(�EF,p-n) equals the band gap. Finally, the surface recombi-
nation (SR) is inhibited, a requirement for efficient operation
(Sec. VI B) and an assumption of the analytical model.

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

ηC {min(∆Ee,g , ∆EF,n-p)}/kBTc

η pV
  / 

η C Z
pV

0 2 4 6 8 10 12 14 16 18 20

Analytical Model
ZpV  

ηTE  / ηC for ZTET = 1

ηC
1/3
1/2
2/3
3/4

La/L
1

1/5

∆Ee,g
75

150
300

Ep,O
150
200
400

m
eV

∆EF,n-p
130
110
90
70

Hydrodynamic Model

FIG. 6. The pV efficiency as a function of ηC�E∗
e,g for variations

in �E∗
e,g and ηC. As shown, the analytical model [Eq. (39)] provides

a reasonable estimate for the pV cell performance. A significant
nonequilibrium (ηC�E∗

e,g) is required to exceed the TE efficiency
(shown for ZTET = 1.0) when ZpV < 0.7.

Note that the extent of the nonequilibrium ηC, rather than
the input heat or optical phonon temperature, is maintained
at ηC = 2

3 . This enables a simplified comparison between
the hydrodynamic and the analytical models, which predicts
ηpV ∝ ηC. This represents a substantial nonequilibrium state.
Moreover, this leads to large current and heat densities. For
example, at Tc = 300 K, the optical phonon is excited to
900 K, a short-circuit current density of nearly 1000 A/mm2

is generated, and a heat flux of 1000 W/mm2 is required. To
avoid such large fluxes, a smaller phonon linewidth, a high
figure of merit, or small nonequilibrium are required.

Figure 6 summarizes the hydrodynamic results for varia-
tions in the dimensionless band gap (�E∗

e,g = �Ee,g/kBTc)
and the Carnot limit (ηC: primarily influences the fill fac-
tor and open-circuit voltage), the intrinsic diode potential
(�EF,p-n/ec: primarily affects the open-circuit voltage) and
the active length (La: primarily affects pV operation at high
temperatures). While γ̇ ∗

e-p, �Ee,g/Ep,O, and ZpV are constant
in these pV cell, Fig. 9 (end of section) shows the pV efficiency
for variations in these parameters and highlights the agreement
between the analytical and hydrodynamic models when γ̇ ∗

e-p <

0.5 and La = L. The analytical model gives a reasonable
estimate across a wide range of parameters. However, there
is significant discrepancy. This section explains the factors
responsible for the difference and highlights the additional
diode parameters required for effective pV operation.

A. Device operation

Before delving into the myriad parameters influencing
the pV efficiency and its divergence from the analytical
model, Fig. 7 illustrates the internal operation of the pV cell
at 300 K under the applied voltage which maximizes ηpV

(�ϕa = 5 mV). In this cell, the optical phonon is excited
within the junction, driving generation. The electrons and
holes are separated by the junction and transported to and
collected by the contacts. The applied voltage simultaneously
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FIG. 7. Spatial distributions of (a) the electron and hole densities,
(b) population temperatures, and (c) generation and downconversion
rates for a pV cell under 5 mV of applied voltage (maximum
power) with Tc = 300 K and Tp,O = 900 K in the active region.
The abrupt drop in the optical phonon temperature outside the active
region leads to recombination and a lowered open-circuit voltage.
Downconversion, however, extends throughout the cell.

drives carriers across the junction, reducing the net generation
of electrons within the active region and inducing their
recombination outside of it. While downconversion primarily
occurs within the active region, it extends throughout the
entire cell. The analytic model, in comparison, assumes the
hot optical phonon population diffuses throughout the entire
volume (La = L), driving substantial downconversion and
generation. This leads to a decrease in the open-circuit voltage
and performance loss, as shown in Figs. 6 and 8. Note that the
electron, hole, and acoustic phonon transport are sufficiently
fast to ensure their respective population does not equilibrate
with the optical phonon.

In Fig. 8, the (a) dimensionless and (b) dimensional current-
voltage curves for this cell are shown for variations in the
contact temperature. The dimensionless curves highlight the
analytical limits ηQE = γ̇ ∗

e-p and �ϕo = ηC�Ee,g/ec, while
the dimensional curves illustrate how a practical pV cell
should behave. In particular, it depicts the efficiency loss at
high temperatures, where the increased dark current reduces
the fill factor and the open-circuit voltage. While the short-
circuit current vanishes with the temperature, the quantum
efficiency remains constant. Indeed, low temperatures reduce
both generation and downconversion rates, such that the
current loss is balanced by the reduced downconversion rate.
Additionally, the reduced relaxation rate in a cold cell enables
the optical phonon to diffuse throughout the cell, despite its
slow transport, and drive generation. Thus, the open-circuit
voltage in a cold pV cell approaches that of a pV cell
with La = L, i.e., that predicted by the analytical model.
Furthermore, Fig. 8 shows that both the quantum efficiency

FIG. 8. (a) Dimensionless and (b) dimensional current-voltage
curves for variations in Tc for the pV cell parameters in Table III.
As expected, the quantum efficiency, open-circuit voltage (�ϕo),
and efficiency are limited by γ̇ ∗

e-p , ηC�Ee,g , and ZpV . This limiting
efficiency is approached as Tc vanishes and the nonequilibrium
extends across the entire cell, i.e., when FF → 1 and La = L.

and open-circuit voltage are significantly reduced when the
surface recombination (SR) is not inhibited.

Furthermore, the dimensional curves in Fig. 8(b) emphasize
the substantial current densities in a pV cell (and thus the heat
density required to drive it). Three factors influence the current
density: (i) the hot phonon temperature Tp,O, (ii) the extent of
the nonequilibrium ηC, and (iii) the coupling strengths ae-p

and ap-p. Increasing these parameters increases the rate of hot
optical phonon relaxation (heat required for a given ηC) and
the electron production (je). Thus, if lower current densities
are desired, a cold cell and an optical phonon weakly coupled
to the electron and phonon systems are required. Additionally,
restricting La reduces the current generated within the pV cell.

B. Achieving analytic efficiency

A myriad of factors influence cell operation. In order to
achieve the predictions offered by the analytic model, a few
cell design factors are crucial, the most crucial of which
are highlighted here in order of importance. (i) Electron
transport and pV length must ensure the electron-phonon
nonequilibrium persists. (ii) Surface recombination must be
inhibited. (iii) There must be sufficient doping. (iv) The optical
phonon must diffuse throughout the cell. Briefly, these four
factors are discussed in the following section.

The core concept of the pV cell requires that local
electron-phonon nonequilibrium exists. If electron transport is
exceptionally slow or the cell is sufficiently long (e.g., order of
μm), a large concentration gradient forms between the active
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region and the contact. The excess electrons in the active region
block generation and reduce the quantum efficiency.

Surface recombination decimates the pV efficiency, and it
does so in two ways. First, the minority carriers generated near
the contacts tend to diffuse into those contacts and recombine.
These generation events only produce entropy and lower the
quantum efficiency, as shown in Fig. 8. Second, the small size
of the pV cell implies that minority carriers driven over the
junction by an applied voltage tend to reach the contact, if
their entrance is not inhibited [35].

With no doping, no junction forms, minority and major-
ity carriers are not separated, and the open-circuit voltage
vanishes. Indeed, while the analytical model predicts that the
open-circuit voltage is limited by the band gap, it is truly
limited by the change in the Fermi level from the p to n

regions of the pV cell (�EF,p-n). Thus, to achieve the analytic
prediction, the change in Fermi level must exceed ηC�Ee,g .

Less important, but noticeable, is the ratio of the active
region to the total volume. While generation occurs only in
the active region, the applied voltage tends to drive minority
carriers throughout the entire pV cell, where they recombine.
This in turn reduces the open-circuit voltage, as shown in
Fig. 8. Note that the analytical model assumes La/L = 1,
such that La/L = 0.2 leads to a slight underperformance. At
higher temperatures, this is especially noticeable, as the optical
phonons relax quickly and do not escape the active region. At
low temperatures, the cooling length is much larger, such that
the optical phonon diffuses throughout the pV cell, regardless
of the active length.

C. Exceeding analytic efficiency

Just as a myriad of factors reduce pV performance below
that predicted by the analytic model, there are a few important
factors that enhance pV cell operation. Primarily, these factors
are slow acoustic phonon transport and large γ̇ ∗

e-p. When
acoustic transport is slow, the acoustic phonon population in
the active region heats up significantly. This reduces the net
rate of downconversion. When γ̇ ∗

e-p is large, the analytic model
overpredicts the heat requirements.

Consider a pV cell with a large γ̇ ∗
e-p. In this case, the optical

phonon relaxes solely through the production of electrons.
At open-circuit conditions, no heat is required to maintain
the hot optical phonon population [36]. The analytic model,
conversely, predicts that the heat requirement does not change,
even as the electron-phonon coupling slows. Thus, the analytic
model greatly overestimates heat requirements when γ̇ ∗

e-p ap-
proaches unity and the fill factor is small (i.e., when the net gen-
eration rate decreases quickly as the applied voltage grows).

In Fig. 9, this discrepancy is illustrated for a pV cell at
room temperature (300 K). Moreover, these results are for
a moderate fill factor (around 0.7). When ηC vanishes, the
current-voltage curve becomes linear. In this case, achieving a
large γ̇ ∗

e-p ensures a significant reduction in the heat required
to operate at maximum efficiency. Thus, the hydrodynamic
simulations (HM) diverge from the analytical model (AM) for
γ̇ ∗

e-p > 0.4. Indeed, as γ̇ ∗
e-p approaches unity, the pV nearly

reaches its limit: ηpV = ηCZpV. Figure 9 also shows the role
of resonance in achieving high efficiency. When no kinetic
energy is produced during a generation event, no optical

η pV
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η C

 ZpV, FF , ηC  < 1

ηTE  / ηC for ZTET = 1
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FIG. 9. Efficiency of a pV cell for variations in γ̇ ∗
e-p using the

analytical (AM) and hydrodynamic (HM) models. While increased
resonance between Ep,O and �Ee,g increases efficiency, increasing
γ̇ ∗

e-p enables the efficiency to approach its limit: ηCZpV. Moreover, it
greatly reduces the impact the temperature has on the efficiency and
enables efficient room-temperature operation. The TE efficiency is
shown for comparison.

phonon energy is wasted. Thus, a pV with a resonant band
gap surpasses the TE performance even at lower γ̇ ∗

e-p.
Finally, Fig. 9 shows the potential of a pV cell to substan-

tially outperform the TE, even at room temperature. Indeed,
with a resonant and energetic optical phonon mode which
primarily generates electrons, the pV cell triples the efficiency
of a TE with ZTTE = 1. Even under reduced nonequilibrium,
such a pV cell doubles the TE efficiency. These encouraging
results motivate the search for a high-ZpV material, which we
conduct in Paper II [20].

VII. CONCLUSIONS

Here, we proposed and discussed the phonovoltaic cell
which harvests energetic optical phonons resonant with the
band gap to generate power in a p-n junction. The central
mechanisms, the electron-phonon and anharmonic three-
phonon coupling, are discussed to quantify the quantum
efficiency (ηQE = γ̇ ∗

e-p). The Monte Carlo simulations of the
Boltzmann transport equation depicts the cell function using
these couplings. Then, an approximate efficiency is developed
analytically and a pV figure of merit proposed, i.e.,

ZpV = γ̇ ∗
e-p

�Ee,g

Ep,O
� 1, γ̇ ∗

e-p = γ̇e-p

γ̇e-p + γ̇p-p
,

ηpV � ηCZpV

[
1 − 0.75 exp

(
−ηC�Ee,g

10kBTc

)]
,

ηC = 1 − Tc

Tp,O
. (40)

These results are most accurate when the surface
recombination is suppressed, hot phonon relaxation is slow
compared to the transport (or La = L), and γ̇ ∗

e-p is small or FF
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is large. Regardless, Eq. (40) provides reasonable predictive
power across a wide range of ZpV and ηC�E∗

e,g , as shown
in Figs. 6 and 9. Importantly, this equation shows that either
large ηC or large ZpV are required for efficient pV operation.

Hydrodynamic simulations highlight the device require-
ments and validate the analytic model. These requirements are
(i) the active volume should be maximized, such that La/L �
1, unless the relaxation of hot optical phonon populations
is slow compared to its transport; (ii) minority carriers
must be blocked from entering the contact and recombining
(i.e., hindered surface recombination); (iii) the p-n junction
must be sufficiently strong (�EF,p-n > ηC�Ee,g), without
inhibiting generation and lowering γ̇ ∗

e-p. Additionally, the
hydrodynamic model predicts that large γ̇ ∗

e-p increases the
efficiency significantly compared to the linear relationship
predicted by the analytic model.

When these requirements are met, and for ZpV � 0.7, the
pV cell is shown to significantly outperform a TE cell with
ZTET = 1 (Figs. 5, 6, and 9). In Paper II [20] of this study, the
band gap of graphite is tuned through partial hydrogenation to
resonate with its optical phonon modes in an effort to develop
a pV material. However, hydrogenation degrades the electron-
phonon coupling and reduces the γ̇ ∗

e-p below that required
for an efficient pV. So, while finding and tuning a high-ZpV

material remains challenging, this paper shows the benefits
of success, and Paper II develops the methods for tuning and
evaluating a material candidate.
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APPENDIX A: HYDRODYNAMIC MODEL SIMULATIONS

The hydrodynamic model takes the first three moments of
the BTE to simulate the electron transport [32]. These moments
conserve the carrier density (ni), momentum density ( j i),
and kinetic energy density (wi) for electron (i = e) and hole
(i = h), i.e.,

∇ · j i = ecṅi ,

j i = μi(±kBTi∇ni + kBni∇Ti − ecni∇ϕe), (A1)

∇ · wi = − ji · ∇ϕ −
∑

ẇi,

where Ti and μi are the temperature and mobility of carrier
i. These equations track the drift and diffusion of electron
and hole populations as well as the diffusion and advection
of kinetic energy, and ṅi and ẇi quantify the addition of
carriers and kinetic energy to population i. The kinetic energy
flux is

wi = ∇ 3
2kBTi j i − κi∇Ti, (A2)

where the thermal conductivity is

κi = π2

3

k2
B

ec

Tiμini, (A3)

from the Weidemann-Franz law.
Here, the electron-phonon interaction drives both ṅi and

ẇi . The generation model follows the band-to-band models
[37] discussed previously, i.e.,

ṅi = −ae-p[nenh − ni(Tp,O)2], (A4)

where ae-p is the generation coefficient associated with
the electron-phonon coefficient and ni(Tp,O) is the intrinsic
carrier concentration at Tp,O. The kinetic energy imparted
to the electron (and hole) population per generation event
is, on average, (Ep,O − �Ee,g)/2. The corresponding energy
transfer ẇG is

ẇG = Ep,O − �Ee,g

2
ṅe. (A5)

Additionally, the electron kinetic energy density (3/2kBTene)
equilibrates with the optical phonon temperature. The corre-
sponding energy transfer is

ẇi−p,O = 3

2
kB

Ti − Tp,O

τi−p,E

ni, (A6)

where τi−p,E is the electron phonon energy relaxation time
[32].

Furthermore, the Poisson equation ensures a self-consistent
simulation, i.e.,

∇ · εeε◦∇ϕ = −ec(ne + nD − nh − nA), (A7)

where εeε◦ is the electrical permittivity of the material and nD

and nA are the doping densities for electron donor and acceptor
atoms.

The optical (i = p,O) and acoustic phonon (i = p,A)
populations are modeled using the conduction equation, i.e.,

− ∇ · ∇κiTi = ∑
ṡi−j , (A8)

where the optical phonon population gains energy from an
external source (ṡp,O−in) and loses energy for each gener-
ation event (ṡG), from heating electron (and hole) (ṡp,O−e),
and downconversion (ṡp,O−p,A), which the acoustic phonon
population absorbs, i.e.,

ṡG = Ep,Oṅe,

ṡp,O−i = −ẇi−p,O,
(A9)

ṡp,O−p,A = Ep,Oap-p
[
f ◦

p,O(Tp,A)2 − f ◦
p,O(Tp,O)2

]
,

ṡp,A−p,O = −ṡp,O−p,A,

where f ◦
p,O(T ) is the equilibrium optical phonon occupancy

at temperature T , and ap-p is the downconversion coefficient
associated with the anharmonic coupling strength. Note that
Eq. (A9) assumes that the acoustic phonon populations
(f ′◦

p,A(T ) and f ′′◦
p,A(T )) are nondegenerate and classical statis-

tics are appropriate, i.e.,

f ◦
p,O(T ) = exp

(
−Ep,O

kBT

)
= f ′◦

p,A(T )f ′′◦
p,A(T ). (A10)
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The hydrodynamic, Poisson, and phonon equations form a
set of seven closed balance equations. Note that the closure
involves the following assumptions: the kinetic energy is pri-
marily thermal (w = 3/2kBT ), populations are nondegenerate,
there is equilibrium within but not between populations e, h,
p,O, and p,A, and the temperature tensor is diagonal. If the
material is anisotropic, care must be taken with the transport
coefficients and the assumption of a diagonal temperature
tensor; however, the transport has negligible effect on a
sufficiently thin pV cell.

1. Boundary conditions

The optical phonon is excited to a constant temperature
in the active region, and it is not allowed to escape at the
contacts (∇Tp,O = 0). (This assumes that the contact material
has no optical phonon mode of comparable energy.) All other
temperatures are maintained at the contact temperature Tc. An
Ohmic contact is simulated for the both carriers when surface
recombination occurs (w/SR). Otherwise, the no minority cur-
rent is allowed to enter the contact and only the majority carrier
has its density maintained by the Ohmic contact (w/o SR), i.e.,

All simulations:

ecϕ(0) = EF(0), ecϕ(L) = EF(L) − �ϕa,

∇Tp,O(0,L) = 0, Tp,A(0,L) = Te(0,L) = Th(0,L) = Tc,

nh(0) = ne,v exp

[
Ee,v − EF(0)

kBTc

]
, ne(L) = ne,c exp

[
EF(L) − Ee,c

kBTc

]
.

w/SR:

ne(0) = ne,c exp

[
EF(0) − Ee,c

kBTc

]
, nh(L) = ne,v exp

[
Ee,v − EF(L)

kBTc

]
.

w/o SR:

je(0) = 0, i.e., jh(L) = 0, i.e.,

∇Te(0) = 0, ∇Th(L) = 0,

ne(0) = kBTe

ec

∇ne

∇ϕe

, ∇nh(L) = −kBTh

ec

∇nh

∇ϕe

, (A11)

where EF is the Fermi energy and ne,c and ne,v are the
effective density of states for conduction and valence bands.

2. Simulations

The simulations are performed on a 1D mesh with 0.25-
nm spacing between control volumes. The equations are
coupled and solved using the damped-inexact Newton method.
Calculations are considered converged when the change in
current changes by less than 10−6% over 1000 iterations.
Convergence is reached within minutes across a wide range of
parameters.

APPENDIX B: SURFACE-RECOMBINATION EFFECTS

The negative effects outlined in Sec. VI B are shown
in Fig. 10. When the generation occurs near the contact, a
significant number of minority carriers accumulate in the p

region, as shown in Fig. 10(a). When these minority carriers
are prevented from entering the contact and recombining, they
diffuse towards the junction, which separates them from the
majority carrier, and then the opposing contact collects them.
Conversely, when SR occurs, these minority carriers diffuse
into the adjacent contact as shown in Fig. 10(a). Indeed, for
La = L a large minority-carrier density gradient develops at
the contact (x = 0). This creates a large adverse current.

While restricting the active region to the junction minimizes
this effect, an applied potential drives a substantial number
of minority carriers into the contact regardless of La/L, as
shown in Fig. 10(a). Thus, an efficient pV cell must utilize

window layers on both contacts in order to prevent surface
recombination.
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FIG. 10. (a) Minority carrier density and (b) electron and hole
currents in a pV cell with and without surface recombination (SR)
for variations in the active volume and applied potential. With
SR, carriers generated near the contact are lost instead of being
collected. Moreover, the applied voltage drives minority carriers into
the contacts, instead of reducing the net generation, reducing pV
performance.
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