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Interflake thermal conductance of edge-passivated graphene
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Based on the quantum-junction transmission/Green’s function formalism and the dynamical matrix/DFT,
we find the phonon wave features result in bimodal resonant transmission in the interflake conductance of
H or O edge-passivated graphene. The low-frequency resonant transport mode is due to the weak interaction
between the flakes, while the high-frequency resonant transport mode depends on the passivated species and
brings the temperature dependence. The phonon transport polarized in the transport directions is dominant
because of the asymmetric charge distribution of . . .C−O−H−C. . . and this contributes to the conductance.
Thermal conductance decreases due to the passivation junctions, and the electronic thermal conductance becomes
negligible except for the O−H junction at high temperatures.
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I. INTRODUCTION

The bottleneck in the electronic and phonon transport of
graphene-based composites,1 promising for their superior
electrical and thermal transport properties,2–4 is in the
interflake resistance. This is due to the very weak interflake
interactions compared to the strong covalent bonds in the
graphene flakes. Here, we examine the interflake thermal
energy transport using the quantum thermal energy transport
treatments, while considering that applications of graphene
may include its inevitable passivated form. The graphene flakes
are commonly edge (and side) passivated with various atomic
groups,5,6 and these edge passivations influence the graphene
properties.7 We consider those O or H passivations of graphene
flake edges which do not corrugate the graphene plane, so
there are three interflake junction arrangements, O−H, O−O,
and H−H. The carrier scattering then is concentrated in the
interflakes junction when considering the long intragraphene
mean free path for the energy carriers compared with the
flake dimension.4,8 The nanoscale thermal transport addresses
the quantum features and the carrier wave effects,9 and within
that the nonequilibrium Green’s function (NEGF) formalism
is the treatment we use.10 Also, for phonon transport in
heterostructures, the semiclassical acoustic mismatch model
(AMM)11 or diffuse mismatch model (DMM)12 and molecular
dynamics (MD)13 can provide limited, but more intuitive,
insights into the phonon transport. However, MD based on the
classical Newtonian mechanics has the limitation whereby
the quantum effects must be considered even though it can
easily include the anharmonic effects, and the conventional
semiclassical AMM and DMM do not include the atomic
details of the interfaces and the quantum and wave natures of
the phonon transport.14–16 In this work, we employ both the
NEGF formalism and the AMM treatment for the interflake
phonon transport across the edge-passivated graphene and,
although the electronic thermal transport is expected to be
small in this system,17,18 we include it for insight into the force
fields and to complete treatment of the thermal transport.

II. PHONON THERMAL TRANSPORT

A. NEGF formalism

In analogy to the NEGF for the electronic transport,19 we
calculate the Green’s functions using the Hessian matrix with

elements ∂2E/∂xixj (E is the energy and xi and xj are the ith
and j th degree of freedom).20 These matrices are calculated
using the density functional theory (DFT) calculation with
finite differences (0.015 Å) provided in the Vienna ab initio
simulation package (VASP).21 The equilibrium structures for
the Hessian matrix calculations are obtained by the relaxation
of the considered structure with the conjugate gradient (CG)
method, and all the atoms are relaxed until the maximum
absolute force is less than 0.01 eV/Å. The DFT calcula-
tion in VASP employs the Perdew-Burke-Ernzerhof (PBE)
parametrization of the generalized gradient approximation
(GGA) for exchange and correlation22 with the projector
augmented wave method.23,24

The relaxed structures of the joined, passivated graphene
flakes (zigzag edges) show restructuring within the first four
C atoms from the edge (and negligible difference from the
bulk, within less than 0.01 Å, beyond that). In the Green’s
function formalism, we consider a central region connected
to two semi-infinite regions representing the bulk graphene,
as shown in Fig. 1. The central region is divided into two
“contact cells or electrodes” on each side with four carbon
atoms and a “scattering region or junction” with four carbon
atoms on each side of the passivated atoms, also shown in
Fig. 1. We consider the interaction of the nearest-neighbor
cells only and the energy flow from the left to the right with the
temperatures TL and TR prescribed. The interatomic distance
(d) is 1.42 Å from the DFT relaxation and the width (a) and
the height (b) of the periodic bulk cell is 3d and 31/2d. Since
the interflake contact is 1D (in the y direction), in addition
to the carriers with the transport direction (κ∗

y = 0, where
κ∗

y = κyb and κy is the wave number in the y direction), we
include other transport directions (κ∗

y �= 0). So, we sample for
κ∗

y considering the upper and lower neighboring cells in the
y direction. From the orthogonalized dynamical matrix with
elements, −1/(mimj )1/2(∂2E/xixj ) (mi and mj are the mass
of atoms),10 we extract the matrix of the central region with
κ∗

y given as25

KCC(κ∗
y ) =

⎡
⎢⎣

K ll(κ∗
y ) K lc(κ∗

y ) 0

K cl(κ∗
y ) K cc(κ∗

y ) K cr (κ∗
y )

0 K rc(κ∗
y ) K rr (κ∗

y )

⎤
⎥⎦, (1)
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FIG. 1. (Color online) The edge-passivated graphene-flake junction used for the thermal transport calculations. The entire domain is divided
into a central and two semi-infinite regions, and the central region is divided into a scattering and two electrode regions. The temperatures TL

and TR are prescribed. d is the interatomic distance, and a and b is the width and height of the periodic bulk cell.

where for each element K ij (κ∗
y ) = KMiUj

e−iκ∗
y + KMiMj

+
KMiLj

eiκ∗
y . Here, i and j can be l, c, or r (for the left

electrode, the scattering region, or the right electrode. The
subscripts, U , M , and L represent upper, middle, and lower
cells in the vertical (y) direction. KMiMj

is the dynamical
matrix for the interaction between the i and j cells that
are in the middle strip, and KMiUj

(or KMiLj
) is the matrix

for the interaction between the i cell in the middle strip
and the j cell in the upper (or lower) strip. To represent
the interaction of semi-infinite bulk graphenes, we calcu-
late the self-energy (�R

L or �R
R) employing the decimation

technique suggested by Lopez-Sancho et al.26 The phonon-
retarded Green’s function of the central region is given
by27

GR(κ∗
y ,ωp) = [

(ωp + iη)2I − KCC(κ∗
y )

−�R
L(κ∗

y ,ωp) − �R
R(κ∗

y ,ωp)
]
, (2)

where ωp is the phonon frequency and η is an infinitesimal
number corresponding to the phonon energy dissipation.16

The phonon transmission across the central region is written
as19,28

τp(κ∗
y ,ωp)

= Tr[�L(κ∗
y ,ωp)GR(κ∗

y ,ωp)�R(κ∗
y ,ωp)GA(κ∗

y ,ωp)], (3)

where GA is the phonon advanced Green’s function equivalent
to (GR)† and �L (�R) is the energy-level broadening function
caused by the left (right) electrode and described by

�L/R(κ∗
y ,ωp) = i

[
�R

L/R(κ∗
y ,ωp) − �A

L/R(κ∗
y ,ωp)

]
. (4)

With these Green’s functions the phonon density of states
is27

Dp(κ∗
y ,ωp) = −2ωp

π
Im{Tr[GR(κ∗

y ,ωp)]}. (5)

B. Transmission

For calculations of the self-energy and the bulk graphene
properties, the scattering region is replaced with the same
structure as the left and right electrodes. The graphene phonon

dispersion is obtained using the dynamical matrix from the
DFT calculations with the lattice dynamics relation with the
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FIG. 2. (Color online) (a) The phonon dispersion from � to M
for the bulk graphene. The solid line is from the DFT dynamical
matrix calculations. The red solid circles are from the neutron
scattering data and the blue open circles are from the electron energy
loss spectroscopy (EELS) data.29 (b) The variations of the phonon
transmission with the transport direction (κ∗

y = 0) with respect to the
phonon energy, for the bulk graphene and the passivated junctions.
The transmissions for the passivated junctions are largely suppressed,
while the O−H junction has the largest transmission.
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Born-von Karman boundary condition30

[
ω2

p(κ∗
x ,κ∗

y ,α)I − K cc(κ∗
y ) − K cl(κ

∗
y )eiκ∗

x

− K cr (κ∗
y )e−iκ∗

x

]
s(κ∗

x ,κ∗
y ,α) = 0, (6)

where κ∗
x is the dimensionless wave number in the transport

direction (κ∗
x = κxa and κx is the wave number in the x

direction), α is the polarization [four atoms in each unit cell
and three degrees of freedom per each atom and the number
of total branches (α) is 12], s is the eigenvector, and K cl

(K cr) is the dynamical matrix for the interaction between the
left (right) electrode and the scattering region. The phonon
dispersion found from Eq. (6) is unfolded to show it for the
primitive cell of graphene composed of two C atoms. The
dispersion curve from � to M (κ∗

y = 0) is in good agreement
with the experiments,29 as demonstrated in Fig. 2(a). Because
the passivated atoms are linearly aligned and the transport
with the κ vector (wave vector) propagating in the transport
direction is expected to dominate (when expanding to the
longer functional groups, it would be more dominant), we,
first, focus on the dominant transport direction (κ∗

y = 0). In
the ideal ballistic transport, when all modes are transmitted
without scattering, the phonon transmission is the number
of modes at frequency ωp,30 and the NEGF transmission
for graphene is similar to this ballistic limit with a small η,

as shown in Fig. 2(b). Phonons incident from the graphene
are transported through the passivated edges in the three
junctions with significantly suppressed transmissions. The
τp for the O−H junction is the largest among the three,
and in all three the phonons with the low energy (less
than 30 meV) and some high energies have relatively high
transmissions.

C. Polarization

Since the dynamical matrices demonstrate that the cou-
plings between the different polarizations are weak, we
consider the three polarizations separately, which are the
longitudinal (L or the transport direction), transverse in plane
(T), and out-of-plane (Z) directions. Figures 3(a)–3(c) show
the phonon density of states and transmissions, as a function of
phonon energy, for the three polarizations of wave vectors with
the transport direction for the O−H interflakes. The Dp for
the carbon atoms near the flake edges are distorted compared
to the bulk Dp, due to the restructuring in the edges and the
interaction with the passivated atoms.31 The Dp for the edge
atoms have sharp peaks due to the asymmetric coupling and
the nonperiodicity, and their frequencies mostly depend on the
interaction with the nearest C atoms [∼(�ij /mij )0.5, where �ij

is the force constant and mij is the reduced mass].32 Because
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FIG. 3. (Color online) Variations of the phonon density of states and transmissions (at κ∗
y = 0) with respect to the phonon energy for

(a) the longitudinal (L), (b) transverse (T), and (c) out-of-plane (Z) directions, for the O−H passivated junction. Due to the interaction with
the junction atoms and the atomic restructuring, Dp is distorted in the interfacial regions. The isosurface of the charge density (ρ∗

e = 0.02), the
charge (q∗

e ) associated with each atom, and the difference from the valence charges (δ) are shown in (d). Note that τp is the largest in the L
direction and is bimodal with the wide peaks at low and the sharp peaks at the edge-resonant frequencies.

235433-3



SEUNGHA SHIN AND MASSOUD KAVIANY PHYSICAL REVIEW B 84, 235433 (2011)

of the much smaller mass of the H atom compared to O, H
acquires high frequencies in spite of the stronger interaction
of O with the nearest C atom.

The asymmetric charge distribution in the O−H is shown
from the Bader charge analysis33 as Fig. 3(d), which shows
the isosurface of the charge density (ρ∗

e = 0.02), the charge
associated with each atom according to Bader partitioning
(q∗

e ), and the net charge (δ) which is the difference from
the valence charges. This induces the Coulomb interaction
between the two flakes, and the interaction with the transport
direction enhances the phonon transport polarized with the L
direction. Thus, in the O−H junction, the phonon transmission
in the L polarization is much larger than the other polarizations
(T and Z), and most of the phonon energy is transported by
the phonons polarized in the L direction. Differing from the
O−H junction, the O−O and H−H junctions cause much
weaker coupling between the two flakes and do not show
the dominance of the phonons with a particular polarization
(because the transport in the L polarization is suppressed as
much as the other directions).

The transmission in the L polarization in the O−H junction
is bimodal showing the broad peak at the low frequency
and the sharp peak at the high frequency for the O-resonant
vibration. Only phonons with the energies available in the
graphene reservoirs can contribute to the phonon transport and
the frequencies for H are over the cutoff of the graphene (L) or
are in the phonon bandgaps (in the T and Z polarizations), so
the phonons with the H-resonant frequencies cannot contribute
to the transport for wave vectors vectors with the transport
direction. Despite the absence of the phonon energy states in
the H atom, the phonons with the resonant frequency of O can
be transmitted through the tunneling. This resonant tunneling
is enhanced by the strong interaction of the passivated atoms
with the opposite flake, so the L-polarized phonon has a higher
τp at the resonance of the passivated atom. The long-wave
phonons with the low energy (resonant with the weak
couplings between two flakes) are less scattered and dominate
in the phonon transport. This bimodal transport leads to
different channels depending on the temperature (high-energy
phonons have higher population at high temperature).

D. Semiclassical transmission

In relating the semiclassical treatment to the NEGF, we
calculate the τp in the AMM employing the specular scattering
as an analogy to the electromagnetic waves. In the AMM,11 the
phonon transmission is obtained with the acoustic impedance
(Zp) as

τp,L/R,AMM = 4Zp,LZp,R

(Zp,L + Zp,R)2
, (7)

where τp,L/R,AMM is the phonon transmission from the left
to right region, Zp,L is the impedance for the left and Zp,R

is for the right region, and Zp is commonly used as ρup,
where ρ is the density and up is the phonon speed (up

is proportional to D−1
p in 1D systems). Here, scattering is

due to the mismatch in the phonon spectra (phonon speed,
density, etc.). (The maximum transmission is unity with
the same phonon properties for both sides, as in the bulk.)
Because Dp in the central region is heterogeneous, due to the
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FIG. 4. (Color online) Comparison of the phonon transmission
(at κ∗

y = 0) from the AMM treatment with the NEGF. The AMM
transmission is in good agreement with the NEGF at low frequencies
but does not show the high-frequency transmission.

restructuring as confirmed in Fig. 3, we consider the phonon
scattering at the interface of neighboring atoms (τp,i/i+1,AMM)
using the local Zp proportional to the D−1

p and combine all
interfacial τp,i/i+1,AMM in the central region to find the overall
transmission τp,AMM,

τp,AMM = τp,1/2,AMMτp,2/3,AMM...τp,17/18,AMM

=
17∏
i=1

τp,i/i+1,AMM. (8)

Since the semiclassical treatments, e.g., the AMM applied
here, assume a quasiparticle carrier, the wave natures (e.g.,
interference) are not addressed. In spite of that, we observe
that τp,AMM is in good agreement with the NEGF results as in
Fig. 4, except for the high-frequency transmission by treating
the atomic details with Dp at every atomic location in the
scattering region. Small disagreement is ascribed to the omitted
wave natures in the AMM and the simple combination that
only counts the nearest-neighbor interactions, thus excluding
the interference, the tunneling, and the multiple reflections and
transmissions.

E. Phonon conductance

In 1D transport with a given κ∗
y , the phonon conductance is

evaluated using the Landauer formula,34,35

Gp,1D(κ∗
y ) [W/K] =

∫ ∞

0

dωp

2π
h̄ωpτp(κ∗

y ,ωp)

[
∂f o

p (ωp,T )

∂T

]
,

(9)

where T is the temperature, h̄ is the the reduced Planck
constant, the equilibrium Bose-Einstein distribution function is
f o

p (ωp,T ) = [exp(h̄ωp/kBT ) − 1]−1, and kB is the Boltzmann
constant. To include contributions from all wave vectors (as
well as κ∗

y = 0), we sample κ∗
y values (200 points in the first
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FIG. 5. (Color online) Phonon transmissions as functions of the component κ∗
y in the wave vector space and the phonon energy for (a) bulk

graphene, (b) O−H, (c) O−O, and (d) H−H junctions. The transmissions are symmetric and larger near the transport direction (κ∗
y = 0).

Brillouin zone, −π � κ∗
y < π ) and integrate 1D conductance

for each direction for the 2D conductance as,25

Gp,2D [W/m K] = 1

b

∫ π

−π

dκ∗
y Gp,1D(κ∗

y ). (10)

Figures 5(a)–5(d) show the phonon transmissions as func-
tions of the component κ∗

y in the κ vector space and the
phonon energy for the graphene and passivated graphene
junctions. The bulk graphene in the ballistic limit has integer
transmission for all κ directions, and the phonon transmissions
through interflake junctions are limited by the bulk graphene
transmission. The transmissions are symmetric and larger
near the transport direction (κ∗

y = 0).
The phonon conductance per unit width (Gp,2D, W/m K) is

calculated by use of Eqs. (9) and (10) with the transmission in
Fig. 5 and, using the layer separation distance (0.335 nm) in
the graphite as the thickness, we find the phonon conductance
per unit area (Gp,3D, W/m2 K), which is shown in Fig. 6(a).
Gp,3D’s for the edge-passivated graphene junctions are largely
suppressed to less than 1% of bulk graphene Gp,3D,Bulk

at 300 K (4.76 GW/m2 K from this work) because only

phonons with the low energy or the tunneled resonant energy
can be transmitted through the interflakes, as shown in
Fig. 6(b). Figure 6(c) shows the contribution of wave vec-
tors to thermal conductance [G∗

p(κ∗
y ) = Gp,1D(κ∗

y )/(bGp,2D)
satisfying

∫ π

−π
dκ∗

y G∗
p(κ∗

y ) = 1] and it confirms that the
phonons with the transport direction are dominant. This is
further clear for the passivated graphene junctions at lower
temperature.

As heterostructure systems experience large decrease in
the transport by the Kapitza resistance at the interfaces, the
reduction in thermal conductance of the graphene junctions
with the edge passivation drastically reduce the effective
thermal conductivity of the graphene composite. The total
thermal resistance of the linear chain of graphene flakes
(1/Gp,3D,Chain) is the sum over the resistances for the graphene
flakes and the interflakes junctions, i.e.,

1

Gp,3D,Chain
= nj

(
1

Gp,3D,GF
+ 1

Gp,3D,j

)
+ 1

Gp,3D,GF
, (11)

where nj is the number of the interflake junctions in the chain
and Gp,3D,GF and Gp,3D,j are the thermal conductance of the
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(kp,Bulk = 3567 W/m K), are used.4,17

graphene flake and the interflake junction. With uniform length
for the graphene flakes (lGF), the effective thermal conductivity
of the chain with sufficiently long length, Lc = (nj + 1)lGF, is

〈kp,Chain〉 = Gp,3D,ChainLc = Gp,3D,GFGp,3D,j

Gp,3D,GF + Gp,3D,j

lGF. (12)

Since the conductance calculated in this work is based on
the ballistic transport, the thermal conductivity of graphene
flakes depends on lGF and the phonon mean free path λp,17

i.e.,

kp,GF = Gp,3D,GFlGF = Gp,3D,Bulk
lGFλp

lGF + λp

. (13)

The phonon thermal conductivity of undisrupted graphene
kp,Bulk (i.e., lGF → ∞) is Gp,3D,Bulkλp (4756 W/m K with
λp = 1.0 μm and 3567 W/m K with λp = 0.75 μm). Using the
phonon conductance of interflake junction and the graphene
flake, we find the effective thermal conductivity of the linear
chain composed of graphene flakes with uniform length. Fig-
ure 6(d) shows variation of the effective thermal conductivity

as a function of the flake length (〈kp,Chain〉 increases with lGF).
Here we confirm the large reduction of the effective thermal
conductivity compared to the undisrupted graphene.

III. ELECTRONIC THERMAL TRANSPORT

The electronic thermal conductance is calculated using the
NEGF and the TranSIESTA module within the SIESTA code
(with the GGA-PBE exchange correlation, the CG relaxation,
and a single ζ -plus-polarization basis set)36 and the same
configuration shown in Fig. 1. For infinitesimal voltage and
temperature differences, the electronic thermal conductance
is37

Ge,2D [W/m K] = 1

bT

(
K2 − K2

1

K0

)
, (14)

where Kn is defined as Kn = (1/πh̄)
∫

dEe(Ee −
EF )nτ̃e(Ee)[−∂f o

e (Ee,T )/∂Ee], EF is the Fermi-level
defined by the external electrode, τ̃e is the average
electron transmission over the sampled κ vectors
(200 points in the y direction) with regard to the
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FIG. 7. (Color online) (a) Variations of the electronic thermal
conductance (Ge,3D,j , solid lines) on the left and that scaled with
Gp,3D,j (Ge,3D,j /Gp,3D,j , dashed lines) on the right, without an exter-
nal bias potential, with respect to temperature. (b) The charge-density
isosurface (ρ∗

e = 0.02) on the left and the wave function (|ψe|2 =
0.01) of the first eigenstate below the EF (at the � point) on the right,
for the bulk and the three junctions. Different colors (blue and red) in
the wave functions correspond to the opposite signs.

electron energy, and f o
e is for the equilibrium fermion,

f o
e (Ee,T ) = {exp[(Ee − EF )/kBT ) + 1}−1. Ge,3D for bulk

and three junctions are calculated with the layer separation
distance as in Gp,3D and compared with Gp,3D in Fig. 7(a). The
reduction of Ge from the bulk value is more pronounced than
Gp, when no external bias potential is applied. Figure 7(b)
presents the charge-density isosurface (ρ∗

e = 0.02) and the

wave function of the first eigenstate below the EF (at the �

point). The low charge density presents between the flakes
and the localized orbital exists near the passivated edge for
the symmetric junctions differing from the chemical σ or π

bond between the passivation atom and the nearest C7 and
the delocalized π bond in the bulk graphene. These lead to
the large drop in the magnitude of Ge. For the asymmetric
junction O−H, the Ge is less suppressed because of the
delocalization in the molecular orbital due to the asymmetric
charge distribution. As shown to right of Fig. 7(a), the Ge for
all the three junctions is smaller than the Gp, especially at
low temperatures, with the O−H junction suffering the least
reduction.

IV. CONCLUSIONS

We examined the interflake electronic and phonon thermal
conductances of the edge-passivated graphene flakes. We
found a bimodal phonon transmission at the low and high
frequencies caused by the weak coupling between two flakes
and the tunneling resonant peaks of the passivated atoms with
the NEGF, whereas the AMM treatment with the multiple
interfaces predicts only the low-frequency transmission. This
transmission also explains the different phonon transport
mechanisms at low and high temperatures. The relatively
strong interaction between O- and H-passivated graphene
flakes leads to a high conductance and the dominance of
the phonon polarized in the transport direction. We suggest
that the mode or frequency dependence of the phonon
transport is controlled by the edge passivation, and this
provides a tool for the phonon engineering of the graphene
compounds. Thermal conductance noticeably decreases due
to the edge-passivated graphene junctions and the phonon
thermal transport dominates over the electronic except for the
asymmetric junction at high temperatures. Since the bottleneck
of the effective phonon transport in the graphene composites is
the conductance between the flakes (or fibers), our findings can
benefit the design of such high-effective-thermal-conductivity
composites.
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